精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠C=90º,AC=6cm,BC=8cm,D、E分别是AC、AB

的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿

BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t

<4)s.解答下列问题:

(1)当t为何值时,PQ⊥AB?

(2)当点Q在B、E之间运动时,设五边形PQBCD的面积为ycm2,求y与t之间的函数关系式;

(3)在(2)的情况下,是否存在某一时刻t,使得PQ分四边形BCDE所成的两部分的面积之比为

=1∶29?若存在,求出此时t的值以及点E到PQ的距离h;若不存在,请说明理由.

 

【答案】

(1)(2)y(3)当时,h

【解析】解:(1)如图,

在Rt△ABC中,AC=6,BC=8,

 ∴

                ∵点D、E分别是AC、AB的中点,

∴AD=DC=3,AE=EB=5,DE∥BC,且DE=BC=4。

                ∵PQ⊥AB,∴∠PQB=∠C=900

 又∵DE∥BC,∴∠AED=∠B。

∴△PQE∽△ABC。∴

由题意,得PE=4-t,QE=2t-5,

,解得

∴当时,PQ⊥AB。

(2)过点P作PM⊥AB于点M。

     由△PME∽△ABC,得

     ∴,即

     ∴

        。

     ∴

(3)假设存在时刻t使=1∶29,此时,

     ∴,即

     解得(舍去)。

     当时,PM=,ME=,EQ=5-2×2=1,

MQ=ME+EQ=

,∴

时, PQ分四边形BCDE所成的两部分的面积之比为=1∶29,此时点E到PQ的距离h

(1)由△PQE∽△ABC可列式求解。

(2)由△PME∽△ABC可求得,根据可求关系式。

(3)假设存在,由已知=1∶29可得,即可求出,进一步由求出

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案