精英家教网 > 初中数学 > 题目详情
(2012•南宁)已知点A(3,4),点B为直线x=-1上的动点,设B(-1,y).
(1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求y与x之间的函数关系式;
(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;
(3)如图2,当点B的坐标为(-1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标.
分析:(1)过点A作AE⊥x轴于点E,先证明△BCD∽△CAE,再根据相似三角形对应边成比例即可求出y与x之间的函数关系式;
(2)先运用配方法将y=-
1
4
x2+
1
2
x+
3
4
写成顶点式,再根据自变量x的取值范围即可求解;
(3)欲使四边形ABEF的周长最小,由于线段AB与EF是定长,所以只需BE+AF最小.为此,先确定点E、F的位置:过点A作x轴的平行线,并且在这条平行线上截取线段AA′,使AA′=1,作点B关于x轴的对称点B′,连接A′B′,交x轴于点E,在x轴上截取线段EF=1,则点E、F的位置确定.再根据待定系数法求出直线A′B′的解析式,然后令y=0,即可求出点E的横坐标,进而得出点E的坐标.
解答:解:(1)如图1,过点A作AE⊥x轴于点E.
在△BCD与△CAE中,
∵∠BCD=∠CAE=90°-∠ACE,∠BDC=∠CEA=90°,
∴△BCD∽△CAE,
∴BD:CE=CD:AE,
∵A(3,4),B(-1,y),C(x,0)且-1<x<3,
∴y:(3-x)=(x+1):4,
∴y=-
1
4
x2+
1
2
x+
3
4
(-1<x<3);

(2)y有最大值.理由如下:
∵y=-
1
4
x2+
1
2
x+
3
4
=-
1
4
(x2-2x)+
3
4
=-
1
4
(x-1)2+1,
又∵-1<x<3,
∴当x=1时,y有最大值1;

(3)如图2,过点A作x轴的平行线,并且在这条平行线上截取线段AA′,使AA′=1,作点B关于x轴的对称点B′,连接A′B′,交x轴于点E,在x轴上截取线段EF=1,则此时四边形ABEF的周长最小.
∵A(3,4),∴A′(2,4),
∵B(-1,1),∴B′(-1,-1).
设直线A′B′的解析式为y=kx+b,
2k+b=4
-k+b=-1

解得
k=
5
3
b=
2
3

∴直线A′B′的解析式为y=
5
3
x+
2
3

当y=0时,
5
3
x+
2
3
=0,解得x=-
2
5

故线段EF平移至如图2所示位置时,四边形ABEF的周长最小,此时点E的坐标为(-
2
5
,0).
点评:本题考查了相似三角形的性质与判定,待定系数法求一次函数的解析式,轴对称-最短路线问题,综合性较强,有一定难度.(1)中通过作辅助线证明△BCD∽△CAE是解题的关键,(3)中根据“两点之间,线段最短”确定点E、F的位置是关键,也是难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•南宁)如图,已知函数y=x-2和y=-2x+1的图象交于点P,根据图象可得方程组
x-y=2
2x+y=1
的解是
x=1
y=-1
x=1
y=-1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南宁)已知二次函数y=ax2+bx+1,一次函数y=k(x-1)-
k2
4
,若它们的图象对于任意的非零实数k都只有一个公共点,则a,b的值分别为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南宁)如图,已知矩形纸片ABCD,AD=2,AB=4.将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB,CD交于点G,F,AE与FG交于点O.
(1)如图1,求证:A,G,E,F四点围成的四边形是菱形;
(2)如图2,当△AED的外接圆与BC相切于点N时,求证:点N是线段BC的中点;
(3)如图2,在(2)的条件下,求折痕FG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黑龙江)2011年11月6日下午,广西第一条高速铁路-南宁至钦州铁路扩能改造工程正式进入铺轨阶段.现要把248吨物资从某地运往南宁、钦州两地,用大、小两种货车共20辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往南宁、钦州两地的运费如下表:
         运往地
车型
南宁(元/辆) 钦州(元/辆)
大货车 620 700
小货车 400 550
(1)求这两种货车各用多少辆?
(2)如果安排9辆货车前往南宁,其余货车前往钦州,设前往南宁的大货车为a辆,前往南宁、钦州两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);
(3)在(2)的条件下,若运往南宁的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.

查看答案和解析>>

同步练习册答案