精英家教网 > 初中数学 > 题目详情
如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与轴交于点B,且OA=OB,求这两个函数的关系式及两直线与轴围成的三角形的面积.
    3.75
解:如图,过点A作AC⊥轴于点C,

则AC=3,OC=4,所以OA=OB=5,
故B点坐标为(0,).
设直线AO的关系式为,因为其过点A(4,3),
,解得.所以.
设直线AB的关系式为
因为其过点A(4,3)、B(0,),
解得:
所以关系式为.
,得,则D点坐标为(2.5,0).
所以两直线与轴围成的三角形AOD的面积为2.5×3÷2=3.75.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.

(1)求直线AB的函数解析式;
(2)当点P在线段AB(不包括A,B两点)上时.
①求证:∠BDE=∠ADP;
②设DE=x,DF=y.请求出y关于x的函数解析式;
(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=k1x+b(k1≠0)与双曲线(k2≠0)相交于A(1,m)、B(-2,-1)两点.求直线和双曲线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=x-4x+3的图象交x轴于A,B两点(点A在点B的左侧),              交y轴于点C.

(1)求直线BC的解析式;
(2)点D是在直线BC下方的抛物线上的一个动点,当△BCD的面积最大时,求D点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数的图象经过点(3,6)与点(,﹣),求这个函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,即当每月用水量不超过15吨时(包括15吨),采用基本价收费;当每月用水量超过15吨时,超过部分每吨采用市场价收费,小兰家4、5月份的用水量及收费情况如下表:
月份
用水量(吨)
水费(元)
4
22
51
5
20
45
(1)分别求基本价和市场价.
(2)设每月用水量为n吨,应缴水费为m元,请写出m与n之间的函数关系式.
(3)小兰家6月份的用水量为26吨,则她家要缴水费多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知一次函数的图象经过第一、二、三象限,则b的值可以是(     )
A.-1B.0C.2D.任意实数

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数的图象经过点(),且与正比例函数的图象相交于点(4,),
求:(1)的值;
(2)的值;
(3)求出这两个函数的图象与轴相交得到的三角形的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依次类推,即每多买一台,则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:
(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?
(2)若此单位恰好花费7 500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?

查看答案和解析>>

同步练习册答案