精英家教网 > 初中数学 > 题目详情
若函数y=
kx
中,当x=2时,y=-3,则函数解析式是
 
分析:用待定系数法确定反比例函数的比例系数k,求出函数解析式.
解答:解:把x=2,y=-3代入y=
k
x
中得,k=-6,
所以函数解析式是y=-
6
x

故答案为:y=-
6
x
点评:本题主要考查了用待定系数法确定反比例函数的比例系数k,求出函数解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线y=-x-5交x轴于A,交y轴于B,点P(0,-1),D是线段AB上一动点,DC⊥y轴于点C,反比例函数y=
kx
的图象经过点D.
(1)若C为BP的中点,求k的值.
精英家教网
(2)DH⊥DC交OA于H,若D点的横坐标为x,四边形DHOC的面积为y,求y与x之间的函数关系式.
精英家教网
(3)将直线AB沿y轴正方向平移a个单位(a>5),交x轴、y轴于E、F点,G为y轴负半轴上一点,G(0,-a+5),点M、N以相同的速度分别从E、G两点同时出发,沿x轴、y轴向点O运动(不到达O点),同时静止,连接并延长FM交EN于K,连接OK、MN,当M、N两点在运动过程中以下两个结论:①∠EFM=∠MNK;②∠FMO=∠OKN,其中只有一个结论是正确的,请判断并证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将一矩形OABC放在直角坐标系中,O为坐标原点.点A在y轴正半轴上.点E是边AB上的一个动点(不与点A、B重合),过点E的反比例函数y=
kx
(x>0)
的图象与边BC交于点F.
(1)若△OAE、△OCF的而积分别为S1、S2.且S1+S2=2,求k的值.
(2)若OA=2,OC=4,当四边形AOFE的面积最大时,求点E、F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•西宁)如图,正方形AOCB在平面直角坐标系xoy中,点O为原点,点B在反比例函数y=
k
x
(x>0)图象上,△BOC的面积为8.
(1)求反比例函数y=
k
x
的关系式;
(2)若动点E从A开始沿AB向B以每秒1个单位的速度运动,同时动点F从B开始沿BC向C以每秒2个单位的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动.若运动时间用t表示,△BEF的面积用S表示,求出S关于t的函数关系式,并求出当运动时间t取何值时,△BEF的面积最大?
(3)当运动时间为
4
3
秒时,在坐标轴上是否存在点P,使△PEF的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列说法:①当m>1时,分式
1
x2-2x+m
总有意义;②若反比例函数y=
k
x
的图象经过点(
-m
33m
),则在每个分支内y随着x的增大而增大;③关于x的方程
x
x-3
-2=
m
x-3
有正数解,则m<6;④在Rt△ABC中,∠ACB=90°,BC=a,AC=b,AB=c,AB边上的高CD=h,那么以
1
a
1
b
1
h
长为边的三角形是直角三角形.其中正确的结论的个数是(  )

查看答案和解析>>

同步练习册答案