精英家教网 > 初中数学 > 题目详情
如图所示,△ABC中,∠C=90°,两直角边AC=8,BC=6,在三角形内有一点P,它到各边的距离相等,则这个距离是(  )
分析:根据题意知P点为三角形的内心.已知两条直角边的长度,运用勾股定理可求斜边长度.
根据直角三角形内切圆半径的计算公式 r=
a+b-c
2
求解.
解答:解:根据题意得 AB=
AC2+BC2
=
82+62
=10.
∴内切圆半径r=
8+6-10
2
=2.即P点到各边的距离是2.
故选B.
点评:此题考查直角三角形的性质,与三角形的内切圆知识结合起来解答就不难.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图所示,△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、AC于D、E,∠CAE:∠EAB=5:2,则∠B=
20°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,△ABC中,AB=AC=10,BD是AC边的高线,DC=2,试求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,△ABC中,BC的垂直平分线交AB于点E,若△ABC的周长为10,BC=4,则△ACE的周长是
6
6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,△ABC中,AB=AC,BD⊥AC,垂足为D,求∠DBC与∠A的关系.

查看答案和解析>>

同步练习册答案