精英家教网 > 初中数学 > 题目详情

设x1,x2是关于x的一元二次方程x2+x+n-2=mx的两个实数根,且x1<0,x2-3x1<0,则


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:因为x2-3x1<0,所以x2<3x1,因为x1<0,所以x2<0.根据根与系数的关系可得x1+x2=m-1,x1x2=n-2,由此可算出m、n的取值范围.
解答:∵x2-3x1<0,
∴x2<3x1
∵x1<0,
∴x2<0.
∵x1,x2是关于x的一元二次方程x2+x+n-2=mx(x2+(1-m)x+n-2=0)的两个实数根,
∴x1+x2=m-1,x1x2=n-2,
∴m-1<0,n-2>0,
解得:
故本题选C.
点评:本题把解不等式与一元二次方程的根与系数的关系紧密联系在一起,更好的考查学生解不等式的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、设x1、x2是关于x的一元二次方程x2+ax+a+3=0的两个实数根,则x12+x22的最小值为
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

设x1、x2是关于x的一元二次方程x2+ax+a=2的两个实数根,则(x1-2x2)(x2-2x1)的最大值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

设x1,x2是关于x的一元二次方程x2+x+n-2=mx的两个实数根,且x1<0,x2-3x1<0,则(  )
A、
m>1
n>2
B、
m>1
n<2
C、
m<1
n>2
D、
m<1
n<2

查看答案和解析>>

科目:初中数学 来源: 题型:

设x1,x2是关于x的一元二次方程x2+2ax+a2+4a-2=0的两实根,当a为何值时,x12+x22有最小值?最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

22、设x1、x2是关于x的方程x2-4x+k+1=0的两个实数根.问:是否存在实数k,使得3x1•x2-x1>x2成立,请说明理由.

查看答案和解析>>

同步练习册答案