精英家教网 > 初中数学 > 题目详情
(2012•南平)如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.
(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)
答:结论一:
AB=AC
AB=AC

结论二:
∠AED=∠ADC
∠AED=∠ADC

结论三:
△ADE∽△ACD
△ADE∽△ACD

(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),
①求CE的最大值;
②若△ADE是等腰三角形,求此时BD的长.
(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)
分析:(1)由∠B=∠C,根据等腰三角形的性质可得AB=AC;由∠1=∠C,∠AED=∠EDC+∠C得到∠AED=∠ADC;又由∠DAE=∠CAD,根据相似三角形的判定可得到△ADE∽△ACD;
(2)①由∠B=∠C,∠B=45°可得△ACB为等腰直角三角形,则AC=
2
2
BC=
2
2
×2=
2
,由∠1=∠C,∠DAE=∠CAD,根据相似三角形的判定可得△ADE∽△ACD,则有AD:AC=AE:AD,即AD2=AE•AC,
AE=
AD2
AC
=
AD2
2
=
2
2
•AD2,当AD⊥BC,AD最小,且AD=
1
2
BC=1,此时AE最小为
2
2
,利用CE=AC-AE得到CE的最大值;
②讨论:当AD=AE时,则∠1=∠AED=45°,得到∠DAE=90°,则点D与B重合,不合题意舍去;当EA=ED时,如图1,则∠EAD=∠1=45°,所以有AD平分∠BAC,得到AD垂直平分BC,则BD=1;
当DA=DE时,如图2,由△ADE∽△ACD,易得△CAD为等腰三角形,则DC=CA=
2
,于是有BD=BC-DC=2-
2
解答:解:(1)AB=AC;∠AED=∠ADC;△ADE∽△ACD;

(2)①∵∠B=∠C,∠B=45°,
∴△ACB为等腰直角三角形,
∴AC=
2
2
BC=
2
2
×2=
2

∵∠1=∠C,∠DAE=∠CAD,
∴△ADE∽△ACD,
∴AD:AC=AE:AD,即AD2=AE•AC,
∴AE=
AD2
AC
=
AD2
2
=
2
2
•AD2
当AD最小时,AE最小,此时AD⊥BC,AD=
1
2
BC=1,
∴AE的最小值为
2
2
×12=
2
2

∴CE的最大值=
2
-
2
2
=
2
2

②当AD=AE时,
∴∠1=∠AED=45°,
∴∠DAE=90°,
∴点D与B重合,不合题意舍去;
当EA=ED时,如图1,
∴∠EAD=∠1=45°,
∴AD平分∠BAC,
∴AD垂直平分BC,
∴BD=1;
当DA=DE时,如图2,
∵△ADE∽△ACD,
∴DA:AC=DE:DC,
∴DC=CA=
2

∴BD=BC-DC=2-
2

∴当△ADE是等腰三角形时,BD的长为1或2-
2
点评:本题考查了相似形综合题:运用相似比进行线段的计算;熟练掌握等腰直角三角形的性质;学会运用分类讨论的思想解决数学问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•南平)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=68°,则∠BAC=
22
22
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南平)如图,在山坡AB上种树,已知∠C=90°,∠A=28°,AC=6米,则相邻两树的坡面距离AB≈
6.8
6.8
米.(精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南平)如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明,
备选条件:AE=CF,BE=DF,∠AEB=∠CFD,
我选择添加的条件是:
BE=DF
BE=DF

(注意:请根据所选择的条件在答题卡相应试题的图中,画出符合要求的示意图,并加以证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南平)如图,直线l与⊙O交于C、D两点,且与半径OA垂直,垂足为H,已知OD=2,∠O=60°,
(1)求CD的长;
(2)在OD的延长线上取一点B,连接AB、AD,若AD=BD,求证:AB是⊙O的切线.

查看答案和解析>>

同步练习册答案