精英家教网 > 初中数学 > 题目详情
7.如图,△ABC中,∠C=60°,AB的垂直平分线交BC于点D,DE=6,BD=6$\sqrt{2}$,AE⊥BC于E,求EC的长.

分析 首先作出辅助线连接AD,再利用线段垂直平分线的性质计算.

解答 解:连接AD,
∵AB的垂直平分线交BC于点D,
∴BD=AD,
∵DE=6,BD=6$\sqrt{2}$,
∴AD=6$\sqrt{2}$,
∴∠ADE=45°,
∴∠B=22.5°,∵∠C=60°,
∴∠BAC=97.5°,
∵∠ADE=∠B+∠DAB=45°,AE⊥BC,
∴DE=AE=6,
∵∠C=60°,
∴∠CAE=90°-60°=30°,
∴AC=2CE,
在Rt△ACE中,AC2=AE2+CE2
即4CE2=62+CE2
∴CE2=12,
解得EC=2$\sqrt{3}$.

点评 本题考查了线段垂直平分线的性质,解直角三角形,本题关键是作出辅助线提示:连接AD.考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.已知一个二次函数的对称轴是x=1,图象最低点P的纵坐标是-8,图象过(-2,10)且与x轴交于A,B与y轴交于C.求:
(1)这个二次函数的解析式;
(2)△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.先化简,再求值.$\frac{{x}^{2}-2xy+{y}^{2}}{2x-2y}$÷($\frac{1}{y}$-$\frac{1}{x}$),其中x=$\sqrt{5}$-1,y=$\sqrt{5}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.多项式$\frac{1}{2}$x|m|-(m-2)x+7是关于x的二次三项式,则m的值为(  )
A.2B.-2C.±2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知:∠EAC=∠DAB=90°,AB=AE,AC=AD,求证:∠E=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)计算7m(4m2p)2÷7m2
(2)运用乘法公式运算 (3x-2y+1)(3x+2y-1)
(3)计算[(x+3)2+(x+3)(x-3)]÷2x
(4)先化简,再求值:2b2+(a+b)(a-b)-(a-b)2,其中a=-3,b=0.5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图①,一条笔直的公路上有A、B、C 三地,B、C 两地相距 150 千米,甲、乙两辆汽车分别从B、C 两地同时出发,沿公路匀速相向而行,分别驶往C、B 两地.甲、乙两车到A 地的距离y1、y2(千米)与行驶时间 x(时)的关系如图②所示.

根据图象进行以下探究:
(1)请在图①中标出A地的位置,并作简要的文字说明;
(2)求图②中M点的坐标,并解释该点的实际意义;
(3)在图②中补全甲车到达C地的函数图象,并求甲车到 A地的距离y1与行驶时间x的函数关系式;
(4)A地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在△ABC中,点D是BC上一点,F是BA延长线一点,DF交AC于E,∠B=42°,∠C=59°,∠DEC=47°.求∠F.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解方程
(1)9-3y=5(y+1)
(2)x-$\frac{x-1}{4}$=1-$\frac{3-x}{2}$.

查看答案和解析>>

同步练习册答案