精英家教网 > 初中数学 > 题目详情

【题目】如图是抛物线y1ax2bxc(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2mxn(m≠0)与抛物线交于AB两点,下列结论:

①2ab=0;

abc>0;

③方程ax2bxc=3有两个相等的实数根;

④抛物线与x轴的另一个交点是(-1,0);

⑤当1<x<4时,有y2<y1

其中正确的是(   ).

A. 5个 B. 4个 C. 3个 D. 2个

【答案】C

【解析】利用轴对称是直线y=1判定①;利用开口方向,对称轴与y主的交点判定a、b、c得出②;利用顶点坐标和平移的规律判定③;利用对称轴和二次函数的对称判定④;利用图象直接判定⑤即可.

解:∵对称轴x=-=1‘∴2a+b=0,①正确;

∵a<0,∴b >0,∵抛物线与y轴的交点在正半轴上,∴c>0,∴abc<0,②错误;

∵把抛物线y=ax2+bx+c向下平移3个单位,得到y=ax2+bx-3,∴顶点坐标A(1,3)变为(1,0),抛物线与x轴相切,∴方程ax2+bx+c=3有两个相等的实数根,③正确;

∵对称轴是直线x=1,与x轴的一个交点是(4,0),∴与x轴的另一个交点是(-2,0),④错误;∵1<x<4时,由图象可知y2<y1,∴⑤正确.

正确的有①③⑤.

故选C.

“点睛”本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b24ac>0时,抛物线与x轴有2个交点;△=b24ac=0时,抛物线与x轴有1个交点;△=b24ac<0时,抛物线与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.

(1)求证:△ABD≌△EBD;

(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分10分)如图,在平行四边形ABCD中,点ABC的坐标分别是(10)、(31)、(33),双曲线y=k≠0x0)过点D

1)求此双曲线的解析式;

2)作直线ACy轴于点E,连结DE,求 CDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠A∶∠B∶∠C123,则∠B=___________,若三角形的最长边为10cm,则最短边长为_________cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P在第二象限,它的横坐标与纵坐标的和是1,点P的坐标可以是________(只要写出符合条件的一个点即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ABD和∠BDC的平分线交于EBECD于点F,∠1+∠2=90°.

(1)试说明:ABCD

(2)若∠2=25°,求∠BFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1=∠2,∠B=∠C,可推得ABCD.理由如下:

∵∠1=2(已知),

且∠1=CGD___ ___

∴∠2=CGD(等量代换)

CEBF__ ___

∴∠____ ____=BFD___ ____

又∵∠B=C(已知)

____ ____(等量代换)

ABCD___ ____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,若点P43)在O内,则O的半径r的取值范围是( )

A. 0r4B. 3r4C. 4r5D. r5

查看答案和解析>>

同步练习册答案