如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.
试求:(1)∠BAD的度数;
(2)四边形ABCD的面积.
【考点】勾股定理;三角形的面积;勾股定理的逆定理.
【专题】计算题.
【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,
(1)根据∠BAD=∠CAD+∠BAC,可以求解;
(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.
【解答】解:(1)连接AC,
∵AB⊥CB于B,
∴∠B=90°,
在△ABC中,∵∠B=90°,
∴AB2+BC2=AC2,
又∵AB=CB=,
∴AC=2,∠BAC=∠BCA=45°,
∵CD=,DA=1,
∴CD2=5,DA2=1,AC2=4.
∴AC2+DA2=CD2,
由勾股定理的逆定理得:∠DAC=90°,
∴∠BAD=∠BAC+∠DAC=45°+90°=135°;
(2)∵∠DAC=90°,AB⊥CB于B,
∴S△ABC=,S△DAC=,
∵AB=CB=,DA=1,AC=2,
∴S△ABC=1,S△DAC=1
而S四边形ABCD=S△ABC+S△DAC,
∴S四边形ABCD=2.
【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.
科目:初中数学 来源: 题型:
已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是( )
A.直角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com