精英家教网 > 初中数学 > 题目详情

点A(2,-3)上平移6个单位后的点关于x轴对称的点的坐标是


  1. A.
    (2,3)
  2. B.
    (2,-3)
  3. C.
    (2,0)
  4. D.
    (8,3)
B
分析:直接利用平移中点的变化规律求解即可.
解答:由点A的平移规律可知,此题规律是(x,y+6),所以平移后的点的纵坐标为(2,3),因为新点与所求的点关于x轴对称,所以要求的点的坐标为(2,-3).
故选B.
点评:本题主要考查了图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、平面上有5个点,其中任意三点都不在同一条直线上,则这些点共可组成
10
个不同的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,先将正方形ABCD对折,折痕为EF,把这个正方形展平后,再将AD边沿经过D点的一直线折叠,BC边沿经过C点的一直线折叠,使点A、点B都与折痕EF上的点G重合,则∠1等于
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

探究:
(1)若平面上有3个点,且不在同一直线上,则以其中的任意两点为端点作线段,一共能作出
 
条不同的线段;
(2)若平面上有4个点,且任意三点不在同一直线上,则以这4个点中的任意两点为端点作线段,一共能作出
 
条不同的线段;
(3)猜想:一般地,若平面上有n个点(n≥3),且任意三点不在同一直线上,则以这n个点中的任意两点为端点作线段,一共能作出
 
条不同的线段.
(4)根据以上的探究,试猜想:若平面上有n个点(n≥3),且任意三点不在同一直线上,则以这n个点中的任意三点为顶点作三角形,一共能作出
 
个不同的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,A为双曲线y=
6
x
上一点,AD⊥y轴于点D,将直线AD向下平移交双曲线于C,交y轴于E,延长AC交x轴于点B,
AC
BC
=2,则
OB-AD
CE
=
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•延平区质检)如图,菱形ABCD中,AC、BD相交于点O,CA=8,DB=4,点E在AB上,过O作OF⊥OE于O,OF=
12
OE,连接FB.
(1)求证:∠AEO=∠BFO
(2)当点E在线段AB上运动时,请写出一个反映BE2,BF2,EF2之间关系的等式,并说明理由;
(3)当点E在线段AB的延长线上运动时,如图,此时(2)中的结论是否依然成立?若成立,请加以证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案