如图,在Rt△ABC中,∠ABC= 90°,以AB为直径的⊙O与AC边交与点D.过D作⊙O的切线交BC与点E.连接OE.
(1)证明:OE∥AC;
(2)①当∠BAC= °时,四边形ODEB是正方形;
②当∠BAC= °时,AD=3DE.
![]()
科目:初中数学 来源: 题型:
如图,在矩形ABCD中,AB=5,AD=3,点P是AB边
上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.
(1)当△CDQ≌△CPQ时,求AQ的长;
(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
在市委宣传部举办的以“弘扬社会主义核心价值观”为主题的演讲比赛中,其中10位参赛选手的成绩如下:9.3;9.5;8.9;9.3;9.5;9.5;9.7;9.4;9.5,这组数据的众数是
查看答案和解析>>
科目:初中数学 来源: 题型:
已知四边形ABCD中.E、F分别是AB、AD边上的点,DE与CF交于点G。
(一)问题初探;
如图①,若四边形ABCD是正方形,且DE上CF.则DE与’CF的数量关系是
;
(二)类比延伸
(1)如图②若四边形ABCD是矩形.AB=m, AD=n.且DE⊥CF,则
= .(用含m,n的代数式表示)
(2)如图③,若四边形ABCD是平行四边形,当∠B+∠EGC=180°时,(1)中的结论是否成立,若成立,请证明你的结论;若不成立,请说明理由.
(三)拓展探究
如图④,若BA= BC= 6,DA= DC= 8,∠BAD= 90°.DE⊥CF,请直接写出
的值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,抛物线y=ax2 +bx+c经过点A(-3,0)、C(0,4),点B在抛物线上,CB
∥X轴.且AB平分∠CAO.
![]()
(1)求抛物线的解析式.
(2)线段AB上有一动点P,过P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,直接写出点M的坐标;如果不存在,说明理由,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com