【题目】双峰县教育局要求各学校加强对学生的安全教育,全县各中小学校引起高度重视,小刚就本班同学对安全知识的了解程度进行了一次调查统计.他将统计结果分为三类,A:熟悉;B:了解较多;C:一般了解。图①和图②是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:
(1)求小刚所在的班级共有多少名学生;
(2)在条形图中,将表示“一般了解”的部分补充完整‘’
(3)在扇形统计图中,计算“了解较多”部分所对应的扇形圆心角的度数;
(4)如果小刚所在年级共1000名同学,请你估算全年级对安全知识“了解较多”的学生人数.
【答案】(1)40人;(2)图形见解析;(3)108°;(4)大约有300人.
【解析】
(1)利用A所占的百分比和相应的频数即可求出;
(2)利用C所占的百分比和总人数求出C的频数即可;
(3)求出“了解较多”部分所占的比例,即可求出“了解较多”部分所对应的圆心角的度数;
(4)利用样本估计总体,即可求出全年级对安全知识“了解较多”的学生大约有1000×(1-50%-20%)=300人.
解:(1)∵20÷50%=40(人),
答:该班共有40名学生;
(2)C:一般了解的人数为:40×20%=8(人),补充图如图所示:
;
(3)360°×(1-50%-20%)=108°,所以在扇形统计图中,“了解较多”部分所对应的圆心角的度数为108°;
(4)1000×(1-50%-20%)=300,所以全年级对安全知识“了解较多”的学生大约有300人.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,BE 平分∠ABC,DE∥BC.
(1)判断△DBE 是什么三角形,并说明理由;
(2)若 F 为 BE 中点,∠ABC=58°,试说明 DF⊥BE,并求∠EDF 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】东营市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.
(1)这次统计共抽取_____本书籍,扇形统计图中的m=______,∠α的度数是_____
(2)请将条形统计图补充完整;
(3)估计全校师生共捐赠了多少本文学类书籍.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于D. 过C点作CG⊥AB于G,交AD于E. 过D点作DF⊥AB于F. 下列结论:①∠CED=∠CDE;②S△AEC:S△AEG=AC:AG;③∠ADF=2∠FDB;④CE=DF.其中正确的结论有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商场购进一种单价为40元的书包,如果以单价50元出售,那么每月可售出30个,根据销售经验,售价每提高5元,销售量相应减少1个.
(1)请写出销售单价提高元与总的销售利润y元之间的函数关系式;
(2)如果你是经理,为使每月的销售利润最大,那么你确定这种书包的单价为多少元?此时,最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,二次函数y=ax2+bx+c与x轴的交点为(x1,0),(x2,0),且x1<x2,若方程ax2+bx+c﹣a=0的两根为m,n(m<n),则下列说法正确的是( )
A. x1+x2>m+n B. m<n<x1<x2 C. x1<m<n<x2 D. m<x1<x2<n
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义新运算:.
例如:32=3(3-2)=3,-14=-1(-1-4)=5.
(1)请直接写出3a=b的所有正整数解;
(2)已知2a=5b-2m,3b=5a+m,说明:12a+11b的值与m无关;
(3)已知a>1,记M=abb,N=bab,试比较M,N的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初二年级为了了解学生上学的交通方式,现从初二年级学生中随机抽取了部分学生进行“我上学的交通方式”问卷调査,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.
请解答下列问题:
(1)在这次调査中,一共抽样调査了 名学生;
(2)扇形统计图中骑车所在扇形的圆心角的度数为 °;
(3)补全条形统计图;
(4)若初二年级共有1500名学生,试估计初二年级学生中选择“步行”方式的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC于点F.
(1)判断DF与是⊙O的位置关系,并证明你的结论。
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com