精英家教网 > 初中数学 > 题目详情

【题目】一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B(参考数据:≈1.732,结果精确到0.1)

【答案】它向东航行约7.3海里到达灯塔P南偏西45°方向上的B处.

【解析】

利用题意得到ACPC,∠APC=60°,∠BPC=45°,AP=20,如图,在RtAPC中,利用余弦的定义计算出PC=10,利用勾股定理求出AC,再判断△PBC为等腰直角三角形得到BC=PC=10,然后计算AC-BC即可.

如图,AC⊥PC∠APC=60°∠BPC=45°AP=20

Rt△APC中,∵cos∠APC=

∴PC=20cos60°=10

∴AC==10

△PBC中,∵∠BPC=45°

∴△PBC为等腰直角三角形,

∴BC=PC=10

∴AB=ACBC=1010≈7.3(海里)

答:它向东航行约7.3海里到达灯塔P南偏西45°方向上的B处.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“驴友”小明分三次从M地出发沿着不同的线路线,B线,C线N在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种他涉水行走4小时的路程与攀登6小时的路程相等线、C线路程相等,都比A线路程多A线总时间等于C线总时间的,他用了3小时穿越丛林、2小时涉水行走和2小时攀登走完A线,在B线中穿越丛林、涉水行走和攀登所用时间分别比A线上升了,若他用了x小时穿越丛林、y小时涉水行走和z小时攀登走完C线,且xyz都为正整数,则______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在RtABO中,∠B=90°,∠OAB=30°,OA=3.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P40)为圆心,PA长为半径画圆,⊙Px轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:

(发现)(1的长度为多少;

2)当t=2s时,求扇形MPN(阴影部分)与RtABO重叠部分的面积.

(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.

(拓展)当RtABO的边有两个交点时,请你直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,对角线BDADECD上一点,连接AEBD于点FGAF的中点,连接DG

1)如图1,若DG=DF=1BF=3,求CD的长;

2)如图2,连接BE,且BE=AD,∠AEB=90°MN分别为DGBD上的点,且DM=BNHAB的中点,连接HMHN,求证:∠MHN=AFB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是( )

A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件

B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是,则甲的射击成绩较稳定

C.明天降雨的概率为,表示明天有半天都在降雨

D.了解一批电视机的使用寿命,适合用普查的方式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:

请你根据统计图回答下列问题:

(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图;

(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?

(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?

(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一条河的北岸有两个目标MN,现在位于它的对岸设定两个观测点AB.已知ABMN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.

(1)求点MAB的距离;(结果保留根号)

(2)B点又测得∠NBA=53°,求MN的长.(结果精确到1米)

(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABCD中,DHAB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF:FA=1:5.

(1)如图2,作FGAD于点G,交DH于点M,将DGM沿DC方向平移,得到CG′M′,连接M′B.

①求四边形BHMM′的面积;

②直线EF上有一动点N,求DNM周长的最小值.

(2)如图3,延长CBEF于点Q,过点QQKAB,过CD边上的动点PPKEF,并与QK交于点K,将PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.

查看答案和解析>>

同步练习册答案