精英家教网 > 初中数学 > 题目详情

【题目】如图,在一条河的北岸有两个目标MN,现在位于它的对岸设定两个观测点AB.已知ABMN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.

(1)求点MAB的距离;(结果保留根号)

(2)B点又测得∠NBA=53°,求MN的长.(结果精确到1米)

(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

【答案】(1) ; (2)95m.

【解析】

(1)过点MMD⊥AB于点D,易求AD的长,再由BD=MD可得BD的长,即MAB的距离;
(2)过点NNE⊥AB于点E,易证四边形MDEN为平行四边形,所以ME的长可求出,再根据MN=AB-AD-BE计算即可.

解:(1)过点M作MD⊥AB于点D,

∵MD⊥AB,

∴∠MDA=∠MDB=90°,

∵∠MAB=60°,∠MBA=45°,

∴在Rt△ADM中,

在Rt△BDM中,

∴BD=MD=

∵AB=600m,

∴AD+BD=600m,

∴AD+

∴AD=(300)m,

∴BD=MD=(900-300)

∴点M到AB的距离(900-300)

(2)过点N作NE⊥AB于点E,

∵MD⊥AB,NE⊥AB,

∴MD∥NE,

∵AB∥MN,

∴四边形MDEN为平行四边形,

∴NE=MD=(900-300),MN=DE,

∵∠NBA=53°,

∴在Rt△NEB中,

∴BEm,

∴MN=AB-AD-BE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】 中,点边上一点,点中点,连接交于点,且

(1)如图1,若,求的值;

(2)如图2,若平分,且,过点于点,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已知OA=8,OC=4,则点A1的坐标为( )

(A).(4.8,6.4) (B).(4,6) (C)(5.4,5.8) (D).(5,6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一条道路上甲车从A地到B乙车从B地到A乙先出发图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象下列说法错误的是(  )

A. 乙先出发的时间为0.5小时 B. 甲的速度是80千米/小时

C. 甲出发0.5小时后两车相遇 D. 甲到B地比乙到A地早小时

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图RtABCC=90°DBC边的中点BD=2tanB=

1)求ADAB的长

2)求sin∠BAD的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点P是以C(﹣)为圆心,1为半径的C上的一个动点,已知A(﹣1,0),B(1,0),连接PAPB,则PA2+PB2的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,且经过弦CD的中点H,已知sinCDB=,BD=5,则AH的长为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),OABC是一张放在平面直角坐标系中的矩形纸片,O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4,在OC边上取一点D,将将纸片沿AD翻转,使点O落在BC边上的点E处.

(1)请直接写出D、E两点的坐标;

(2)如图(2),线段AE上有一动点P(不与A,E重合),自点A沿AE方向做匀速运动,运动的速度为每秒1个单位长度,设运动时间为t秒,过点P作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;

(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种饮料,每瓶进价为10元.经市场调查表明,当售价在12元到14元之间(含12元,14元)浮动时,日均销售y(瓶)与售价x(元)之间的关系可近似的看作一次函数,且当x=10时,y=500;x=12,y=400.

(1)求出y与x的函数关系式,并写出自变量x的取值范围.

(2)应将售价定为每瓶多少元时,所得日均毛利润最大?最大日均毛利润为多少元?(每瓶毛利润=每瓶售价﹣每瓶进价)

查看答案和解析>>

同步练习册答案