精英家教网 > 初中数学 > 题目详情

【题目】 中,点边上一点,点中点,连接交于点,且

(1)如图1,若,求的值;

(2)如图2,若平分,且,过点于点,求证:.

【答案】(1) (2)证明见解析

【解析】

(1)过点作于点,根据平行四边形的性质得到,进而证明为等腰直角三角形,根据勾股定理即可求出的长度,进而求出

根据即可求解.

(2)延长交于点,证明 ,得到,证明 ,得到求出即可证明.

(1)解:过点作于点

中,

,

,

为等腰直角三角形

,

,

,

中,,

由勾股定理得:.

(2)证明:延长交于点

中,,则

中点

平分,且

中,

方法2:可证明四点共圆

方法3: 可求出,利用计算方法求出

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化.某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.

(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;

(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?

(3)若k=3,a=﹣,则喷出的抛物线水线能否达到岸边?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+2与坐标轴相交于A,B两点,与反比例函数y=在第一象限交点C(1,a).求:

(1)反比例函数的解析式;

(2)AOC的面积;

(3)不等式x+2﹣<0的解集(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y1的图象与一次函数y2ax+b的图象交于点A(1,4)和点Bm,﹣2).

(1)分别求出这两个函数的关系式;

(2)观察图象,直接写出关于x的不等式axb>0的解集;

(3)如果点C与点A关于x轴对称,求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB是反比例函数yk≠0)图象上的两点,延长线段ABy 轴于点C,且点B为线段AC中点,过点AADx轴子点D,点E 为线段OD的三等分点,且OEDE.连接AEBE,若SABE7,则k的值为(  )

A. 12 B. 10 C. 9 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在矩形ABCD中,AB=2,BC=6,点E从点D出发,沿DA方向以每秒1个单位的速度向点A运动,点F从点B出发,沿射线AB以每秒3个单位的速度运动,当点E运动到点A时,E、F两点停止运动.连结BD,过点E作EH⊥BD,垂足为H,连结EF,交BD于点G,交BC于点M,连结CF.

(1)△CDE与△CBF相似吗?为什么?

(2)求证:∠DBC=∠EFC;

(3)同线段GH的值是定值吗?如果不是,请说明理由;如果是,求出这个定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.

1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子,并用线段表示;

2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一条河的北岸有两个目标MN,现在位于它的对岸设定两个观测点AB.已知ABMN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.

(1)求点MAB的距离;(结果保留根号)

(2)B点又测得∠NBA=53°,求MN的长.(结果精确到1米)

(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

查看答案和解析>>

同步练习册答案