【题目】已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).
(1)分别求出这两个函数的关系式;
(2)观察图象,直接写出关于x的不等式﹣ax﹣b>0的解集;
(3)如果点C与点A关于x轴对称,求△ABC的面积.
【答案】(1)y1=,y2=2x+2;(2)x<﹣2或0<x<1;(3)12
【解析】
(1)根据待定系数法先求出k、点B坐标,再利用方程组求出一次函数y2即可.
(2)利用图象,反比例函数图象在一次函数图象上方,由此写出不等式的解集.
(3)先求出点C坐标,再根据三角形面积公式即可解决问题.
(1)∵y1=的图象经过点A(1,4)和点B(m,﹣2).
∴k=4,m=﹣2,
∵一次函数y2=ax+b的图象经过A(1,4)和点B(﹣2,﹣2),
∴解得
∴y1=,y2=2x+2,
(2)由图象可知关于x的不等式﹣ax﹣b>0的解集为x<﹣2或0<x<1;
(3)∵点C与点A关于x轴对称,A(1,4),
∴点C坐标(1,﹣4),
∴S△ABC=×3×8=12.
科目:初中数学 来源: 题型:
【题目】如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度数;
(2)若OC=3,OA=5,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.
(1)求抛物线的解析式;
(2)当四边形ODEF是平行四边形时,求点P的坐标;
(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=45°,AB=,AC=6,点D,E为边AC上的点,AD=1,CE=2,点F为线段DE上一点(不与D,E重合),分别以点D、E为圆心,DF、EF为半径作圆.若两圆与边AB,BC共有三个交点时,线段DF长度的取值范围是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=(m+1)x+4的图像与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB的面积为4.
(1)则= 及点的坐标为( );
(2)过点B作直线BP与轴的正半轴相交于点P,且OP=4OA,求直线BP的解析式;
(3)将一次函数的图像绕点B顺时针旋转, 求旋转后的对应的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是垂直于水平面的一棵树,小马(身高1.70米)从点出发,先沿水平方向向左走10米到点,再经过一段坡度,坡长为5米的斜坡到达点,然后再沿水平方向向左行走5米到达点(、、、在同一平面内),小马在线段的黄金分割点处()测得大树的顶端的仰角为37°,则大树的高度约为( )米.(参考数据:)
A. 7.8米 B. 8.0米 C. 8.1米 D. 8.3米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某酒店大门的旋转门内部由三块宽为2米,高为3米的玻璃隔板组成,三块玻璃摆放时夹角相同.若入口处两根立柱之间的距离为2米,则两立柱底端中点到中央转轴底端的距离为( )
A. 米 B. 2米 C. 2米 D. 3米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是( )
A. 乙先出发的时间为0.5小时 B. 甲的速度是80千米/小时
C. 甲出发0.5小时后两车相遇 D. 甲到B地比乙到A地早小时
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com