精英家教网 > 初中数学 > 题目详情

【题目】某超市销售一种饮料,每瓶进价为10元.经市场调查表明,当售价在12元到14元之间(含12元,14元)浮动时,日均销售y(瓶)与售价x(元)之间的关系可近似的看作一次函数,且当x=10时,y=500;x=12,y=400.

(1)求出y与x的函数关系式,并写出自变量x的取值范围.

(2)应将售价定为每瓶多少元时,所得日均毛利润最大?最大日均毛利润为多少元?(每瓶毛利润=每瓶售价﹣每瓶进价)

【答案】(1)y=﹣50x+1000(10≤x≤14);(2)应将售价定为每瓶14元时,所得日均毛利润最大,最大日均毛利润为1200元.

【解析】

(1)利用待定系数法求解即可;
(2)根据“毛利润=每瓶毛利润×销售量”列出函数解析式,将其配方成顶点式后利用二次函数的性质求解可得.

(1)设ykx+b

根据题意得

解得

y=﹣50x+1000(10≤x≤14);

(2)设毛利润为w

w=(﹣50x+1000)(x﹣10)

=﹣50x2+1500x﹣10000

=﹣50(x﹣15)2+1250,

∴当x<15时,wx的增大而增大,

10≤x≤14,

∴当x=14时,w取得最大值,最大值为1200,

答:应将售价定为每瓶14元时,所得日均毛利润最大,最大日均毛利润为1200元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在一条河的北岸有两个目标MN,现在位于它的对岸设定两个观测点AB.已知ABMN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.

(1)求点MAB的距离;(结果保留根号)

(2)B点又测得∠NBA=53°,求MN的长.(结果精确到1米)

(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+2m﹣1x+m2=0有两个实数根x1x2

1)求实数m的取值范围;

2)当x12﹣x22=0时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数 y=x2+bx+c 过点 A(1,0),C(0,﹣3)

(1)求此二次函数的解析式;

(2)求△ABC 的面积;

(3)在抛物线上存在一点 P 使△ABP 的面积为 10,请求出点 P 的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于点Pmn)和点Qxy).给出如下定义:若 ,则称点Q为点P的“伴随点”.例如:点(1,2)的“伴随点”为点(5,0).

(1)若点Q(﹣2,﹣4)是一次函数ykx+2图象上点P的“伴随点”,求k的值.

(2)已知点Pmn)在抛物线C1y上,设点P的“伴随点”Qxy)的运动轨迹为C2

①直接写出C2对应的函数关系式.

②抛物线C1的顶点为A,与x轴的交点为B(非原点),试判断在x轴上是否存在点M,使得以ABQM为顶点的四边形是平行四边形?若存在,求点M的坐标;若不存在,说明理由.

③若点P的横坐标满足﹣2≤ma时,点Q的纵坐标y满足﹣3≤y≤1,直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表所示.

x

﹣3

﹣2

﹣1

0

1

y

﹣6

0

4

6

6

下列说法:抛物线与y轴的交点为(0,6); 抛物线的对称轴在y轴的右侧;抛物线一定经过点(3,0);在对称轴左侧,yx增大而减小.不等式ax2+(b﹣3)x+c﹣6>0解集为﹣2<x<0.其中说法正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知M1(3,2),N1(5,-1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).

(1)若M(-2,5),请直接写出N点坐标.

(2)在(1)问的条件下,点N在抛物线上,求该抛物线对应的函数解析式.

(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC︰OF=2︰,求m的值.

(4)在(3)问条件下,动点P从B点出发,沿x轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的,求此时BP的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%

1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.

2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?

3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.

(1)yx的函数关系式并直接写出自变量x的取值范围;

(2)设每月的销售利润为W,请直接写出Wx的函数关系式;

(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

同步练习册答案