【题目】在平面直角坐标系中,已知M1(3,2),N1(5,-1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).
(1)若M(-2,5),请直接写出N点坐标.
(2)在(1)问的条件下,点N在抛物线上,求该抛物线对应的函数解析式.
(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC︰OF=2︰,求m的值.
(4)在(3)问条件下,动点P从B点出发,沿x轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的,求此时BP的长度.
【答案】(1)N(0,2);(2)y=x2+ x+2;(3)m=-1;(4)BP=2或
【解析】
(1)首先根据点M的移动方向和单位得到点N的平移方向和单位,然后按照平移方向和单位进行移动即可;(2)将点N的坐标代入函数的解析式即可求得k值;(3)配方后确定点B、A、E的坐标,根据CO:OF=2: 用m表示出线段CO、FO和BF的长,利用S△BEC=S△EBF+S△BFC= S△ABC得到有关m的方程求得m的值即可;(4)分当∠BPE>∠APE时、当∠BPE=∠APE时、当∠BPE<∠APE时三种情况分类讨论即可.
(1)N(0,2)
(2)∵N(0,2)在抛物线y=x2+ x+k上
∴k=2
∴抛物线的解析式为y=x2+ x+2
(3)∵y=x2+ x+2=(x+2)2
∴B(-2,0)、A(0,2)、E(-,1)
∵CO:OF=2:
∴CO=-m, FO=-m, BF=2+m
∵S△BEC= S△EBF+ S△BFC=
∴(2+m)(-m+1) =
整理得:m2+m = 0
∴m=-1或0
∵m < 0 ∴m =-1
(4)在Rt△ABO中,tan∠ABO===
∴∠ABO=30°,AB=2AO=4
①∠BPE>∠APE时,连接A1B
则对折后如图2,A1为对折后A的所落点,△EHP是重叠部分.
∵E为AB中点,∴S△AEP= S△BEP= S△ABP
∵S△EHP= S△ABP
∴= S△EHP= S△BHP= S△ABP
∴A1H=HP,EH=HB=1
∴四边形A1BPE为平行四边形
∴BP=A1E=AE=2
即BP=2
②当∠BPE=∠APE时,重叠部分面积为△ABP面积的一半,不符合题意
③当∠BPE<∠APE时.
则对折后如图3,A1为对折后A的所落点.△EHP是重叠部分
∵E为AB中点,∴S△AEP= S△BEP= S△ABP
∵S△EHP= S△ABP∴S△EBH= S△EHP== S△ABP
∴BH=HP,EH=HA1=1
又∵BE=EA=2
∴EHAP
∴AP=2
在△APB中,∠ABP=30°,AB=4,AP=2.
∴∠APB=90° ∴BP=
综合①②③知:BP=2或
科目:初中数学 来源: 题型:
【题目】已知:如图,AB=AC,AD=AE,BE与CD相交于点P.
(1)求证:PC=PB;
(2)求证:∠CAP=∠BAP;
(3)利用(2)的结论,用直尺和圆规作∠MON的平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,点D为△ABC外一点,DC与AB交于点O,且∠BDC=∠BAC.
(1)求证:∠ABD=∠ACD;
(2)过点A作AM⊥CD于M,求证:BD+DM=CM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:
(1)边AC,AB,BC的长;
(2)点C到AB边的距离;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解八年级500名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组:A组:37.5~42.5,B组:42.5~47.5,C组:47.5~52.5,D组:52.5~57.5,E组:57.5~62.5,并依据统计数据绘制了如下两个不完整的统计图.
解答下列问题:
(1)这次抽样调查的样本容量是 ;在扇形统计图中D组的圆心角是 度.
(2)抽取的学生体重中位数落在 组;
(3)请你估计该校八年级体重超过52kg的学生大约有多少名?
(4)取每个小组的组中值作为本组学生的平均体重(A组的组中值为),请你估计该校八年级500名学生的平均体重.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知△ABC和△EFC都是等边三角形,且点E在线段AB上.
(1)求证:BF∥AC;
(2)过点E作EG∥BC交AC于点G,试判断△AEG的形状并说明理由;
(3)如图2,若点D在射线CA上,且ED=EC,求证:AB=AD+BF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某班数学兴趣小组利用数学知识测量建筑物DEFC的高度.他们从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平的地面,则此建筑物的高度CD约为( )米.(参考数据:≈1.7,tan35°≈0.7)
A. 23.1 B. 21.9 C. 27.5 D. 30
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com