如图,在梯形ABCD中,AD∥BC,∠ABC=90°,∠BCD=45°,点E在BC上,且∠AEB=60°.若AB=2
,AD=1,求CD和CE的长.(注意:本题中的计算过程和结果均保留根号)
![]()
CD=2
;CE=2
﹣1.
【解析】
试题分析:过点D作DF⊥BC,则得四边形ABFD是矩形,由AB=2
,可得DF=AB=2
,由∠BCD=45°,可得DF=CF,从而可得DF=CF=2
,由勾股定理得CD的长,因为AD=1,所以BC=2
+1,根据∠AEB=60°,可得BE的长,从而求出CE的长.
试题解析:过点D作DF⊥BC,
![]()
∵AD∥BC,∠ABC=90°,
∴四边形ABFD为矩形,
∵∠BCD=45°,
∴DF=CF,
∵AB=2
,
∴DF=CF=2
,
∴由勾股定理得CD=2
;
∵AD=1,
∴BF=1,
∴BC=2
+1,
∵∠AEB=60°,
∴tan60°=
,
∴
,
∴BE=2,
∴CE=BC﹣BE=2
+1﹣2=2
﹣1.
考点:1、梯形;2、勾股定理;3、三角函数
科目:初中数学 来源:2014年初中毕业升学考试(吉林卷)数学(解析版) 题型:解答题
如图(图略),从一副扑克牌中选取红桃10,方块10,梅花5,黑桃8四张扑克牌,洗匀后正面朝下放在桌子上,甲先从中任意抽取一张后,乙再从剩余的三张扑克牌中任意抽取一张,用画树形图或列表的方法,求甲乙两人抽取的扑克牌的点数都是10的概率.
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(内蒙古呼和浩特卷)数学(解析版) 题型:解答题
如图,已知直线l的解析式为
,抛物线y = ax2+bx+2经过点A(m,0),B(2,0),D
三点.
(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;
(2)已知点 P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E, 延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数, 并求出S的最大值及S最大时点P的坐标;
(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(内蒙古包头、乌兰察布卷)数学(解析版) 题型:选择题
如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则
的值为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年北京市通州区中考二模数学试卷(解析版) 题型:解答题
如图,一次函数
的图象与x轴交于点A,与y轴交于点B,与反比例函数
的图象在第一象限内交于点C,CD⊥x轴于点D,OD=2AO,求反比例函数
的表达式.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年北京市燕山区中考一模数学试卷(解析版) 题型:解答题
定义:如果一个y与x的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是y与x的“反比例平移函数”.例如:
的图象向左平移2个单位,再向下平移1个单位得到
的图象,则
是y与x的“反比例平移函数”.
(1)若矩形的两边分别是2cm、3cm,当这两边分别增加x(cm)、y(cm)后,得到的新矩形的面积为8cm2,求y与x的函数表达式,并判断这个函数是否为“反比例平移函数”.
(2)如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A、C的坐标分别为(9,0)、(0,3).点D是OA的中点,连接OB、CD交于点E,“反比例平移函数”
的图象经过B、E两点.则这个“反比例平移函数”的表达式为 ;这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,请写出这个反比例函数的表达式.
(3)在(2)的条件下,已知过线段BE中点的一条直线l交这个“反比例平移函数”图象于P、Q两点(P在Q的右侧),若B、E、P、Q为顶点组成的四边形面积为16,请求出点P的坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com