精英家教网 > 初中数学 > 题目详情
6.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径
(1)判断BC与⊙O的位置关系,并证明你的结论;
(2)求证:△ABD∽△DBE;
(3)若cosB=$\frac{2\sqrt{2}}{3}$,AE=4,求CD.

分析 (1)结论:BC与⊙O相切,连接OD只要证明OD∥AC即可.
(2)欲证明△ABD∽△DBE,只要证明∠BDE=∠DAB即可.
(3)在Rt△ODB中,由cosB=$\frac{BD}{OB}$=$\frac{2\sqrt{2}}{3}$,设BD=2$\sqrt{2}$k,OB=3k,利用勾股定理列出方程求出k,再利用DO∥AC,得$\frac{BD}{CD}$=$\frac{BO}{AO}$列出方程即可解决问题.

解答 (1)结论:BC与⊙O相切.
证明:如图连接OD.
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠CAB,
∴∠CAD=∠DAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∵AC⊥BC,
∴OD⊥BC.
∴BC是⊙O的切线.

(2)∵BC是⊙O切线,
∴∠ODB=90°,
∴∠BDE+∠ODE=90°,
∵AE是直径,
∴∠ADE=90°,
∴∠DAE+∠AED=90°,
∵OD=OE,
∴∠ODE=∠OED,
∴∠BDE=∠DAB,
∵∠B=∠B,
∴△ABD∽△DBE.

(3)在Rt△ODB中,∵cosB=$\frac{BD}{OB}$=$\frac{2\sqrt{2}}{3}$,设BD=2$\sqrt{2}$k,OB=3k,
∵OD2+BD2=OB2
∴4+8k2=9k2
∴k=2,
∴BO=6,BD=4$\sqrt{2}$,
∵DO∥AC,
∴$\frac{BD}{CD}$=$\frac{BO}{AO}$,
∴$\frac{4\sqrt{2}}{CD}$=$\frac{6}{2}$,
∴CD=$\frac{4\sqrt{2}}{3}$.

点评 本题考查圆的综合题、切线的判定、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,学会用方程的思想思考问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,将抛物线y=x2向右平移a个单位长度,顶点为A,与y轴交于点B,且△AOB为等腰直角三角形.
(1)求a的值;
(2)在图中的抛物线上是否存在点C,使△ABC为等腰直角三角形?若存在,直接写出点C的坐标,并求S△ABC;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.在广东东莞结束的2015年苏迪曼杯决赛中,中国队以3:0的大比分击败日本队,刷新了六届蝉联冠军记录的同时,更是第10次夺得苏迪曼杯世界羽毛球混合团体锦标赛冠军.目前国际比赛通用的羽毛球质量大约是0.005千克,把0.005用科学记数法表示为(  )
A.0.5×10-2B.5×10-3C.5×10-2D.0.5×10-3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列运算正确的是(  )
A.$\sqrt{3}$+$\sqrt{2}$=$\sqrt{5}$B.$\sqrt{-3}$×$\sqrt{-2}$=$\sqrt{6}$C.$\sqrt{12}$-$\sqrt{3}$=$\sqrt{3}$D.$\sqrt{8}$÷$\sqrt{2}$=4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.在同一直角坐标系中,一个学生误将点A的横、纵坐标的次序颠倒,写成A(m,n);另一个学生误将点B的坐标写成关于x轴对称的点的坐标,写成B(-n,-m),则A,B两点原来的位置关系是(  )
A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线x=3对称

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN分别相交于C,D两点.
(1)请直接写出∠COD的度数;
(2)求AC•BD的值;
(3)如图②,连接OP并延长交AM于点Q,连接DQ,试判断△PQD能否与△ACO相似?若能相似,请求AC:BD的值;若不能相似,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图.在△ABC中,AB=4,D是AB上一点(不与点A、B)重合,DE∥BC,交AC于点E.设△ABC的面积为S,△DEC的面积为S′.
(1)当D是AB中点时,求$\frac{S′}{S}$的值;
(2)设AD=x,$\frac{S′}{S}$=y,求y与x的函数表达式,并写出自变量x的取值范围;
(3)根据y的范围,求S-4S′的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)$\left\{\begin{array}{l}{3x-y=5}\\{5x+3y-13=0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x+y=8}\\{5x-2(x+y)=-1}\end{array}\right.$
(3)解不等式组
$\left\{\begin{array}{l}{\frac{x-3}{2}+3≥x}\\{1-3(x-1)<8-x}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列命题中,假命题是(  )
A.三角形任意两边的和大于第三边
B.四边形的内角和、外角和都是360度
C.菱形的对角线互相平分且相等
D.顺次连接正方形各点中点所得的四边形是正方形

查看答案和解析>>

同步练习册答案