精英家教网 > 初中数学 > 题目详情
17.在广东东莞结束的2015年苏迪曼杯决赛中,中国队以3:0的大比分击败日本队,刷新了六届蝉联冠军记录的同时,更是第10次夺得苏迪曼杯世界羽毛球混合团体锦标赛冠军.目前国际比赛通用的羽毛球质量大约是0.005千克,把0.005用科学记数法表示为(  )
A.0.5×10-2B.5×10-3C.5×10-2D.0.5×10-3

分析 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.

解答 解:把0.005用科学记数法表示为5×10-3
故选:B.

点评 本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.如图,已知a∥b,∠2=60°,则(  )
A.∠5=60°B.∠6=120°C.∠7=60°D.∠8=60°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(-1,8)并与x轴交于点A,B两点,且点B坐标为(3,0).
(1)求抛物线的解析式;
(2)若抛物线与y轴交于点C,顶点为点P,求△CPB的面积.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-$\frac{b}{2a}$,$\frac{4ac-{b}^{2}}{4a}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知二次函数y=-x2+bx+c的图象交x轴于点A(-4,0)和点B,交y轴于点C(0,4).
(1)求这个二次函数的表达式;
(2)若点P在第二象限内的抛物线上,求四边形AOCP面积的最大值和此时点P的坐标;
(3)在平面直角坐标系内,是否存在点Q,使A,B,C,Q四点构成平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列数2,π,$\frac{22}{7}$,-$\sqrt{2}$,$\sqrt{9}$中,无理数的个数有(  )个.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列计算正确的是(  )
A.$\sqrt{2}×\sqrt{\frac{1}{2}}=1$B.$\sqrt{{{({-5})}^2}}=-5$C.$\sqrt{6}÷\sqrt{3}=2$D.$\sqrt{3}+\sqrt{2}=\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知y是x的一次函数,解析式为y=(k-1)x+k,它的图象不经过第三象限,那么k的范围是(  )
A.k≥0B.k≤1C.0≤k<1D.0<k≤1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径
(1)判断BC与⊙O的位置关系,并证明你的结论;
(2)求证:△ABD∽△DBE;
(3)若cosB=$\frac{2\sqrt{2}}{3}$,AE=4,求CD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.写出同时具备下列两个条件:①y随x的增大而减小;②图象经过点(0,3)的一次函数表达式y=-x+3(答案不唯一)(写处一个即可)

查看答案和解析>>

同步练习册答案