证明:(1)∵在梯形ABCD中,AB=DC,
∴∠B=∠C.
∵GF=GC,

∴∠C=∠GFC,
∴AB∥GF,即AE∥GF.
∵AE=GF,
∴四边形AEFG是平行四边形.
(2)∵∠FGC+∠GFC+∠C=180°,∠GFC=∠C,∠FGC=2∠EFB,
∴2∠GFC+2∠EFB=180°,
∴∠BFE+∠GFC=90°.
∴∠EFG=90°.
∵四边形AEFG是平行四边形,
∴四边形AEFG是矩形.
分析:(1)要证明该四边形是平行四边形,只需证明AE∥FG.根据对边对等角∠GFC=∠C,和等腰梯形的性质得到∠B=∠C.则∠B=∠GFC,得到AE∥FG.
(2)在平行四边形的基础上要证明是矩形,只需证明有一个角是直角.根据三角形FGC的内角和是180°,结合∠FGC=2∠EFB和∠GFC=∠C,得到∠BFE+∠GFC=90°.则∠EFG=90°.
点评:掌握平行四边形和矩形的判定方法.