精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC中,∠B=90°,AB=16,BC=12,分别以A、C为圆心,数学公式为半径作圆,则阴影部分的周长为


  1. A.
    48
  2. B.
    8+数学公式
  3. C.
    8+5π
  4. D.
    96-25π
C
分析:在RT△ABC中利用勾股定理求出AC,继而得出圆的半径r,然后求出两端圆弧的长,根据EB+BF=AB+BC-2r,可得出EB+BF的长度,继而可得出阴影部分的周长.
解答:
解:在RT△ABC中,AC==20,
故可得出r=10,
两端圆弧的长为:+==5π.
EB+BF=AB+BC-2r=16+12-20=8,
故可得阴影部分的面积为:8+5π.
故选C.
点评:此题考查了弧长的计算及勾股定理的知识,根据题意求出半径及两端弧长之和是解答本题的关键,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案