精英家教网 > 初中数学 > 题目详情
已知在Rt△OAB中,∠B=90°,AO=
12
,BA=2.把△OAB按如图方式放置在直角坐标系中,使点O与原点重合,点A落在x轴正半轴上.求点B的坐标.
分析:过点B作BC⊥x轴交x轴于点C,先根据勾股定理计算出OB=2
2
,再根据面积法计算出BC=
2
6
3
,然后再根据勾股定理计算出OC,即可得到C点坐标.
解答:解:过点B作BC⊥x轴交x轴于点C,如图,
由题意,得OA=
12
,AB=2,
∵∠B=90°,
∴OB2=OA2-AB2=12-4=8,解得OB=2
2

1
2
BC•OA=
1
2
OB•OC,
∴BC=
2×2
2
12
=
2
6
3

在Rt△OBC中,OC=
OB2-BC2
=
4
3
3

∴B点坐标为(
4
3
3
2
6
3
).
点评:本题考查了二次根式的应用:二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.也考查了勾股定理和坐标与图形性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=4.现以O为坐标原点,OA所在直线为精英家教网x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,问:是否存在这样的点P,使得⊙P与两坐标轴都相切?若存在,请求出此时⊙P半径R的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△OAB中,∠OAB=90°,AB=1,OB=2.将△OAB绕点A旋转得△CAD,再将△CAD绕点D旋转得△EDF,且点A,点D,点F均在x轴上,则图中点E的坐标为
3
+
3
2
3
2
3
+
3
2
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=4.现以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,问:是否存在这样的点P,使得⊙P与两坐标轴都相切?若存在,请求出此时⊙P半径R的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年福建省福州市连江县文笔中学九年级(上)期中数学试卷(解析版) 题型:解答题

已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=4.现以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,问:是否存在这样的点P,使得⊙P与两坐标轴都相切?若存在,请求出此时⊙P半径R的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案