精英家教网 > 初中数学 > 题目详情
3.问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.

【发现证明】
小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图1证明上述结论.
【类比引申】
如图2,四边形ABCD中∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD
【探究应用】
如图3,在某公园的同一水平面上,四条通道围成的ABCD,已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40($\sqrt{3}-1)米$,米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:$\sqrt{2}$=1.41,$\sqrt{3}$=1.73).

分析 【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.
【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;
【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠BAD=2∠EAF即可得出EF=BE+FD.

解答 【发现证明】证明:如图(1),∵△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,
∴∠GAF=∠FAE,
在△GAF和△FAE中,
$\left\{\begin{array}{l}{AG=AE}\\{∠GAF=∠FAE}\\{AF=AF}\end{array}\right.$,
∴△AFG≌△AFE(SAS).
∴GF=EF.
又∵DG=BE,
∴GF=BE+DF,
∴BE+DF=EF.

【类比引申】∠BAD=2∠EAF.
理由如下:如图(2),延长CB至M,使BM=DF,连接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,
$\left\{\begin{array}{l}{AB=AD}\\{∠ABM=∠D}\\{BM=DF}\end{array}\right.$,
∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,
$\left\{\begin{array}{l}{AE=AE}\\{∠FAE=∠MAE}\\{AF=AM}\end{array}\right.$,
∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,
即EF=BE+DF.
故答案是:∠BAD=2∠EAF.

【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF,过A作AH⊥GD,垂足为H.
∵∠BAD=150°,∠DAE=90°,
∴∠BAE=60°.
又∵∠B=60°,
∴△ABE是等边三角形,
∴BE=AB=80米.
根据旋转的性质得到:∠ADG=∠B=60°,
又∵∠ADF=120°,
∴∠GDF=180°,即点G在 CD的延长线上.
易得,△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵AH=80×$\frac{\sqrt{3}}{2}$=40$\sqrt{3}$,HF=HD+DF=40+40($\sqrt{3}$-1)=40$\sqrt{3}$,
故∠HAF=45°,
∴∠DAF=∠HAF-∠HAD=45°-30°=15°
从而∠EAF=∠EAD-∠DAF=90°-15°=75°
又∵∠BAD=150°=2×75°=2∠EAF
∴根据上述推论有:EF=BE+DF=80+40($\sqrt{3}$-1)≈109(米),
即这条道路EF的长约为109米.

点评 此题主要考查了四边形综合题,关键是正确画出图形,证明∠BAD=2∠EAF.此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.如图,点A、B、C都在⊙O上,若∠AOB=76°,则∠ACB的度数为(  )
A.19°B.30°C.38°D.76°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.有理数a,b在数轴上的位置如图,那么下列关系正确的是(  )
A.b>aB.-a>bC.|a|>|b|D.a>-b

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为(  )
A.2B.2$\sqrt{2}$C.4$\sqrt{2}$D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.甲工程队完场一项工程需n天,乙工程队要比甲工程队多用3天才能完成这项工程,两队共同工作一天的工作量是$\frac{2n+3}{{n}^{2}+3n}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.数25的算术平方根为(  )
A.±5B.-5C.5D.25

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是(  )
A.-1<x<4B.x<-1或x>3C.x<-1或x>4D.-1<x<3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=2,DB=1,S△ADE=4,则S四边形DBCE(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知4辆板车和5辆卡车一次共运31吨货,10辆板车和3辆卡车一次能运的货相当,如果设每辆板车每次可运x吨货,每辆卡车每次运y吨货,则可列方程组(  )
A.$\left\{\begin{array}{l}{10x+5y=31}\\{4x=3y}\end{array}\right.$B.$\left\{\begin{array}{l}{4x+5y=31}\\{10x-3y=0}\end{array}\right.$
C.$\left\{\begin{array}{l}{4x=5y}\\{10x+3y=31}\end{array}\right.$D.$\left\{\begin{array}{l}{4x+31=5y}\\{10x=3y}\end{array}\right.$

查看答案和解析>>

同步练习册答案