| A. | 2 | B. | 2$\sqrt{2}$ | C. | 4$\sqrt{2}$ | D. | 4 |
分析 过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知$\widehat{AN}$=$\widehat{A′N}$,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.
解答
解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,
连接OB,OA′,AA′,
∵AA′关于直线MN对称,
∴$\widehat{AN}$=$\widehat{A′N}$,
∵∠AMN=30°,
∴∠A′ON=60°,∠BON=30°,
∴∠A′OB=90°,
过O作OQ⊥A′B于Q,
在Rt△A′OQ中,OA′=2,
∴A′B=2A′Q=2$\sqrt{2}$,
即PA+PB的最小值2$\sqrt{2}$.
故选B.
点评 本题考查的是轴对称-最短路线问题,圆周角定理及勾股定理,解答此题的关键是根据题意作出辅助线,构造出直角三角形,利用勾股定理求解.
科目:初中数学 来源: 题型:选择题
| A. | ∠B=∠C | B. | BE=CD | C. | BD=CE | D. | AD=AE |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com