精英家教网 > 初中数学 > 题目详情
6.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=$\frac{\sqrt{2}}{2}$.其中正确的结论有(  )
A.4个B.3个C.2个D.1个

分析 ①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
②正确.由AD∥BC,推出△AEF∽△CBF,推出$\frac{AE}{BC}$=$\frac{AF}{CF}$,由AE=$\frac{1}{2}$AD=$\frac{1}{2}$BC,推出$\frac{AF}{CF}$=$\frac{1}{2}$,即CF=2AF;
③正确.只要证明DM垂直平分CF,即可证明;
④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 $\frac{b}{a}$=$\frac{2a}{b}$,即b=$\sqrt{2}$a,可得tan∠CAD=$\frac{CD}{AD}$=$\frac{b}{2a}$=$\frac{\sqrt{2}}{2}$.

解答 解:如图,过D作DM∥BE交AC于N,
∵四边形ABCD是矩形,
∴AD∥BC,∠ABC=90°,AD=BC,
∵BE⊥AC于点F,
∴∠EAC=∠ACB,∠ABC=∠AFE=90°,
∴△AEF∽△CAB,故①正确;

∵AD∥BC,
∴△AEF∽△CBF,
∴$\frac{AE}{BC}$=$\frac{AF}{CF}$,
∵AE=$\frac{1}{2}$AD=$\frac{1}{2}$BC,
∴$\frac{AF}{CF}$=$\frac{1}{2}$,
∴CF=2AF,故②正确;

∵DE∥BM,BE∥DM,
∴四边形BMDE是平行四边形,
∴BM=DE=$\frac{1}{2}$BC,
∴BM=CM,
∴CN=NF,
∵BE⊥AC于点F,DM∥BE,
∴DN⊥CF,
∴DM垂直平分CF,
∴DF=DC,故③正确;

设AE=a,AB=b,则AD=2a,
由△BAE∽△ADC,有 $\frac{b}{a}$=$\frac{2a}{b}$,即b=$\sqrt{2}$a,
∴tan∠CAD=$\frac{CD}{AD}$=$\frac{b}{2a}$=$\frac{\sqrt{2}}{2}$.故④正确;
故选A.

点评 本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.化简$\frac{2}{{x}^{2}-1}$÷$\frac{1}{x-1}$的结果是(  )
A.$\frac{2}{x-1}$B.$\frac{2}{x}$C.$\frac{2}{x+1}$D.2(x+1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列四个图案中,轴对称图形的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.有理数a,b在数轴上的位置如图,那么下列关系正确的是(  )
A.b>aB.-a>bC.|a|>|b|D.a>-b

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在所标识的角中,互为同旁内角的两个角是(  )
A.∠1和∠3B.∠2和∠3C.∠1和∠4D.∠1和∠2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为(  )
A.2B.2$\sqrt{2}$C.4$\sqrt{2}$D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.甲工程队完场一项工程需n天,乙工程队要比甲工程队多用3天才能完成这项工程,两队共同工作一天的工作量是$\frac{2n+3}{{n}^{2}+3n}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是(  )
A.-1<x<4B.x<-1或x>3C.x<-1或x>4D.-1<x<3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,直线y=$\frac{1}{3}$x+1与x轴,y轴分别相交于点A,C两点,点B在x轴上,连结BC,若∠ACB=135°,则点B的坐标为(  )
A.(1,0)B.($\sqrt{2}$,0)C.(2,0)D.($\sqrt{5}$,0)

查看答案和解析>>

同步练习册答案