精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,以AC为直径的半圆O交AB于点D,点E是AB的中点,CE交半圆O于点F,则图中阴影部分的面积为________cm2

(3π-
分析:易证∠BCE=∠ACD,则根据弦切角定理可以得到与弦AD围成的弓形的面积等于与弦CF围成的弓形的面积相等,则阴影部分的面积等于半圆的面积减去直角△ACD的面积,再减去弓形的面积,据此即可求解.
解答:解:∵Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,
∴AC=AB=6cm,∠A=60°
∵E是AB的中点,
∴CE=AB,
则△ACE是等边三角形.
∴∠BCE=90°-60°=30°,
∵AC是直径,
∴∠CDA=90°,
∴∠ACD=90°-∠A=30°,
∴∠BCE=∠ACD,
=
连接OD,作OG⊥CD于点G,
则∠COD=120°,OG=OC=,CG=CD=
∴阴影部分的面积为:S扇形COD-S△COD=-××=3π-
故答案是:3π-
点评:本题考查了等边三角形的性质,以及圆的面积的计算,正确理解:与弦AD围成的弓形的面积等于与弦CF围成的弓形的面积相等是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案