精英家教网 > 初中数学 > 题目详情

【题目】若a+b=﹣2,且a≥2b,则(
A. 有最小值
B. 有最大值1
C. 有最大值2
D. 有最小值

【答案】C
【解析】解:∵a+b=﹣2, ∴a=﹣b﹣2,b=﹣2﹣a,
又∵a≥2b,
∴﹣b﹣2≥2b,a≥﹣4﹣2a,
移项,得
﹣3b≥2,3a≥﹣4,
解得,b≤﹣ <0(不等式的两边同时除以﹣3,不等号的方向发生改变),a≥﹣
由a≥2b,得
≤2 (不等式的两边同时除以负数b,不等号的方向发生改变);
A、当a>0时, <0,即 的最小值不是 ,故本选项错误;
B、当﹣ ≤a<0时, 有最小值是 ,无最大值;故本选项错误;
C、 有最大值2;故本选项正确;
D、 无最小值;故本选项错误.
故选C.
【考点精析】认真审题,首先需要了解不等式的性质(1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变 .2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 .3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.

(1)如图①,当 时,求 的值;
(2)如图②当DE平分∠CDB时,求证:AF= OA;
(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG= BG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣ x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为 m.
(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.
(1)求舟山与嘉兴两地间的高速公路路程;
(2)两座跨海大桥的长度及过桥费见下表:

大桥名称

舟山跨海大桥

杭州湾跨海大桥

大桥长度

48千米

36千米

过桥费

100元

80元

我省交通部门规定:轿车的高速公路通行费y(元)的计算方法为:y=ax+b+5,其中a(元/千米)为高速公路里程费,x(千米)为高速公路里程(不包括跨海大桥长),b(元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,∠AOC=60°,OC=2.
(1)求OE和CD的长;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB= ,AC= ,BC=1.
(1)求证:∠A≠30°;
(2)将△ABC绕BC所在直线旋转一周,求所得几何体的表面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形一共有1个平行四边形,第②个图形一共有5个平行四边形,第③个图形一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:2sin30°+31+( ﹣1)0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+4与双曲线y= (k≠0)相交于A(﹣1,a)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为

查看答案和解析>>

同步练习册答案