½â£º

£¨1£©ÓÉͼ2¿ÉÖª£¬Å×ÎïÏߵĶ¥µãQ£¨2£¬4£©£¬ÇÒ¹ýµãE£¨4£¬0£©£¬
ÉèS=a£¨m-2£©
2+4£¬
½«µãE£¨4£¬0£©´úÈëµÃ£¬0=a£¨4-2£©
2+4£¬
½âµÃ£ºa=-1£¬
¹Ê¿ÉµÃ£ºS=-£¨m-2£©
2+4£®
£¨2£©ÓÉͼ1¿ÉÖª£¬µ±µãPÓëA»òBÖØºÏʱ£¬s=0£¬ÓÉͼ2Öª£¬´ËʱµãPµÄºá×ø±êΪ0»ò4£¬
ËùÒÔµãB£¨4£¬t+6£©£¬´Ó¶ør=4£®
£¨3£©¹ýµãA×÷Ö±ÏßPC£¬Ö±Ïßx=4µÄ´¹Ïߣ¬´¹×ã·Ö±ðΪM£¬N£¬ÇÒAN=4£¬
¡ßS=

PC•AM+

PC•MN=

AN•PC=2PC=2d£¬
¡àd=

=-

£¨m-2£©
2+2=-

m
2+2m£®
£¨4£©Å×ÎïÏßy=ax
2+bx+cµÄ¶¥µãB£¨4£¬t+6£©£¬ÇÒ¹ýA£¨0£¬6£©£¬
¿ÉÉèÅ×ÎïÏßΪy=a£¨x-4£©
2+t+6£¬
½«A£¨0£¬6£©´úÈëµÃ£º6=16a+t+6£¬
½âµÃ£ºa=

£¬
ËùÒÔy=

£¨x-4£©
2+t+6£¬
ÒòΪֱÏßAB¹ýA£¨0£¬6£©£¬¿ÉÉèÆä½âÎöʽΪy=kx+6£¬
½«B£¨4£¬t+6£©´úÈëµÃ£¬t+6=4k+6£¬½âµÃ£¬k=

£¬ËùÒÔÖ±ÏßAB£ºy=

tx+6£¬
Òò¶øµãP£¨m£¬

m+6 £©£¬µãC£¨ m£¬

£¨m-4£©
2+t+6 £©£¬
PC=d=

m+6-[

£¨m-4£©
2+t+6]=

m
2-

m£¬
ÒòΪµ±m=2ʱ£¬d=2£¬ËùÒÔ

¡Á2
2-

¡Á2=2£¬¼´½âµÃt=-8£¬
Òò¶øËùÇóÅ×ÎïÏßΪy=

£¨x-4£©
2-2£®
·ÖÎö£º£¨1£©¸ù¾Ý2¿ÉµÃ³öÅ×ÎïÏß¶¥µãQµÄ×ø±êΪ£¨2£¬4£©£¬ÇÒ¹ýµãE£¨4£¬0£©£¬È»ºóÉès=a£¨m-2£©
2+4£¬½«µãE£¨4£¬0£©´úÈ룬¿ÉµÃ³öaµÄÖµ£¬¼Ì¶ø¿ÉµÃ³ösÓëmµÄº¯Êý¹ØÏµÊ½£®
£¨2£©¸ù¾Ýͼ1µ±µãPÓëA»òBÖØºÏʱ£¬s=0£¬½áºÏͼ2£¬s=0ʱµãPµÄºá×ø±ê£¬¿ÉµÃ³öµãBµÄºá×ø±êΪ4£¬¼´¿ÉµÃ³örµÄÖµ£®
£¨3£©¹ýµãA×÷Ö±ÏßPC£¬Ö±Ïßx=4µÄ´¹Ïߣ¬´¹×ã·Ö±ðΪM£¬N£¬ÇÒAN=4£¬È»ºó½«aÓÃt±íʾ³öÀ´£¬Çó³öÖ±ÏßABµÄ½âÎöʽ£¬µÃ³öµãP¡¢µãCµÄ×ø±ê£¬¸ù¾ÝPC=d£¬½áºÏµ±m=2ʱ£¬d=2£¬¿ÉµÃ³ötµÄÖµ£¬¼Ì¶ø¿ÉµÃ³öÅ×ÎïÏߵĽâÎöʽ£®
µãÆÀ£º´ËÌâÊôÓÚ¶þ´Îº¯ÊýµÄ×ÛºÏÌâ£¬Éæ¼°ÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢Èý½ÇÐεÄÃæ»ý¡¢¶þ´Îº¯ÊýµÄͼÏó£¬ÁÁµãÔÚÓÚÁ½¸ö¶þ´Îº¯ÊýͼÏóµÄ½áºÏ£¬ÒªÇóÎÒÃÇÄÜÕýÈ·´ÓͼÏóÖлñÈ¡ÐÅÏ¢£¬½â´ð±¾ÌâµÄÄѵãÔÚµÚÈýÎÊ£¬¹ý³Ì±È½Ï·±Ëö£¬×¢Òâ×Ðϸ˼¿¼£®