精英家教网 > 初中数学 > 题目详情
3、如图,不等长的两对角线AC、BD相交于O点,且将四边形ABCD分成甲、乙、丙、丁四个三角形.若OA:OC=OB:OD=1:2,则此四个三角形的关系,下列叙述何者正确(  )
分析:根据已知及相似三角形判定定理,对四个三角形的关系进行分析,从而得到最后答案.
解答:解:在△OAB和△OCD中,OA:OC=OB:OD又∠AOB=∠COD
∴△OAB∽△OCD
即甲丙相似;
无法证明△OAD相似△OCB,乙丁不相似.
故选B.
点评:此题考查了学生对相似三角形的判定方法的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源:第19章《相似形》中考题集(05):19.5 相似三角形的判定(解析版) 题型:选择题

如图,不等长的两对角线AC、BD相交于O点,且将四边形ABCD分成甲、乙、丙、丁四个三角形.若OA:OC=OB:OD=1:2,则此四个三角形的关系,下列叙述何者正确( )

A.甲丙相似,乙丁相似
B.甲丙相似,乙丁不相似
C.甲丙不相似,乙丁相似
D.甲丙不相似,乙丁不相似

查看答案和解析>>

科目:初中数学 来源:第29章《相似形》中考题集(05):29.4 三角形相似的条件(解析版) 题型:选择题

如图,不等长的两对角线AC、BD相交于O点,且将四边形ABCD分成甲、乙、丙、丁四个三角形.若OA:OC=OB:OD=1:2,则此四个三角形的关系,下列叙述何者正确( )

A.甲丙相似,乙丁相似
B.甲丙相似,乙丁不相似
C.甲丙不相似,乙丁相似
D.甲丙不相似,乙丁不相似

查看答案和解析>>

科目:初中数学 来源:第3章《图形的相似》中考题集(07):3.3 相似三角形的性质和判定(解析版) 题型:选择题

如图,不等长的两对角线AC、BD相交于O点,且将四边形ABCD分成甲、乙、丙、丁四个三角形.若OA:OC=OB:OD=1:2,则此四个三角形的关系,下列叙述何者正确( )

A.甲丙相似,乙丁相似
B.甲丙相似,乙丁不相似
C.甲丙不相似,乙丁相似
D.甲丙不相似,乙丁不相似

查看答案和解析>>

科目:初中数学 来源:第24章《图形的相似》中考题集(07):24.3 相似三角形(解析版) 题型:选择题

如图,不等长的两对角线AC、BD相交于O点,且将四边形ABCD分成甲、乙、丙、丁四个三角形.若OA:OC=OB:OD=1:2,则此四个三角形的关系,下列叙述何者正确( )

A.甲丙相似,乙丁相似
B.甲丙相似,乙丁不相似
C.甲丙不相似,乙丁相似
D.甲丙不相似,乙丁不相似

查看答案和解析>>

同步练习册答案