精英家教网 > 初中数学 > 题目详情

如图,在平行四边形ABCD中,P是CD边上的一点,AP与BP分别平分∠DAB和∠CBA.
(1)判断△APB是什么三角形,证明你的结论;
(2)比较DP与PC的大小;
(3)画出以AB为直径的⊙O,交AD于点E,连接BE与AP交于点F,若tan∠BPC=数学公式,求tan∠AFE的值.

解:(1)△APB是直角三角形,理由如下:
∵AD∥BC,
∴∠DAB+∠ABC=180°;
又∵AP与BP分别平分∠DAB和∠CBA
∴∠PAB=∠DAB,∠PBA=∠ABC,
∴∠PAB+∠PBA=(∠ABC+∠DAB)
=×180°=90°,
∴△APB是直角三角形;

(2)∵DC∥AB,
∴∠BAP=∠DPA.
∵∠DAP=∠PAB,
∴∠DAP=∠DPA,
∴DA=DP
同理证得CP=CB.
∴DP=PC.

(3)∵AB是⊙O直径,
∴∠AEB=∠APB=90°.
∵AP为角平分线,即∠EAF=∠PAB,
∴△AEF∽△APB,
∴∠AFE=∠ABP,
又ABCD为平行四边形,∴DC∥AB,
∴∠ABP=∠BPC,
∵tan∠BPC=
∴tan∠AFE=
分析:(1)可通过角的度数来判断三角形APB的形状.由于ABCD是平行四边形,AD∥BC,那么同旁内角∠DAB和∠CBA的和应该是180°,AP,BE平分∠DAB,∠ABP,于是∠PAB和∠ABP的和就应该是90°,即∠APB=90°,因此可得出三角形APB的形状.
(2)可通过平行和角平分线,通过等角对等边得出DP=AP,同理可证出PC=BC,根据平行四边形的性质,AD=BC,可得出DP=PC.
(3)由AB为圆的直径,根据直径所对的圆周角为直角得到∠AEB=∠APB=90°,又AP为角平分线,根据角平分线定义得到一对角相等,根据两对角相等的两三角形相似,得到三角形AEF与三角形APB相似,进而得到对应角相等,又平行四边形的对边AB与DC平行,得到一对内错角相等,等量代换得到∠AFE与∠BPC相等,即可求出所求∠AFE的正切值.
点评:本题主要考查了平行四边形的性质,圆周角定理,相似三角形的判定等知识点.在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.充分利用平行四边形的性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,在平行四边形ABCD中,EF∥AD,GH∥AB,EF、GH相交于点O,则图中共有
9
个平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,证明:四边形DFBE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.点M是边AD上一点,且DM:AD=1:3.点E、F分别从A、C同时出发,以1厘米/秒的速度分别沿AB、CB向点B运动(当点F运动到点B时,点E随之停止运动),EM、CD精英家教网的延长线交于点P,FP交AD于点Q.设运动时间为x秒,线段PC的长为y厘米.
(1)求y与x之间函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,PF⊥AD?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,AB=2
2
AO=
3
OB=
5
,则下列结论中不正确的是(  )
A、AC⊥BD
B、四边形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•同安区一模)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为
4cm
4cm

查看答案和解析>>

同步练习册答案