精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中有三点A(a,0),B(b,0),C(1,3),且a,b满足|3b+a﹣2|+=0

(1)A,B的坐标;

(2)x负半轴上有一点D,使SDOC=SABC,求点D坐标:

(3)在坐标轴上是否还存在这样的点D,使SDOC=SABC仍然成立?若存在直接写出点D的坐标;若不存在,说明理由.

【答案】(1)(﹣4,0),B(2,0);(2)点D坐标为(﹣2,0);(3)点D坐标为(2,0),(0,6),(0,﹣6).

【解析】

(1)根据绝对值和算术平方根的非负性列方程组解出即可;
(2)设点D坐标为(d,0),且d<0,根据列式SDOC=SABC可得d的值,得出点D的坐标;

(3)还有一个d=2,再计算当点Dy轴上时,其坐标为(0,y),根据面积公式可得结论.

(1)|3b+a2|+=0

3b+a2=0,ba6=0

解这个方程组,a=4,b=2

A(4,0),B(2,0)

(2)设点D坐标为(d,0),且d<0

SDOC=SABC

SDOC=×|d|×3=× (4+2)×3

|d|=2

d=2

D坐标为(2,0)

(3)答:在坐标轴上还存在这样的点D,使SDOC=SABC,仍然成立,

(2)可知:d还可以为2

D(2,0)

当点Dy轴上时,D(0,y)

SDOC=SABC

×|y|×1=××6×3

y=±6

D(0,6)(0,6)

综上所述,D坐标为(2,0),(0,6),(0,6).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读理解:

例:已知:

求: 的值.

解:

解决问题:

(1)若 ,求 x、y 的值;

(2)已知 的三边长且满足

①直接写出a=__________.b=___________

②若 中最短边的边长(即c<a;c<b),且 为整数,直接写出 的值可能是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线 x轴、y轴分别交于AB两点,直线x轴、y轴分别交于C两点,且

(1)求直线的解析式,并判断的形状;

(2)如图为直线上一点,横坐标为为直线上一动点,当最小时,将线段沿射线方向平移,平移后的对应点分别为,当最小时,求点的坐标;

(3)如图,将沿着轴翻折,得到,再将绕着点顺时针旋转)得到,直线与直线轴分别交于点.当为等腰三角形时,请直接写出线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).
(1)当t=3时,求足球距离地面的高度;
(2)当足球距离地面的高度为10米时,求t;
(3)若存在实数t1 , t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中的每个小正方形边长都是1.请同学们利用网格线进行画图:

(1)在图1中,画一个顶点为格点、面积为5的正方形;

(2)在图2中,已知线段AB、CD,画线段EF,使它与AB、CD组成轴对称图形;(要求画出所有符合题意的线段)

(3)在图3中,找一格点D,满足:CB、CA的距离相等;到点A、C的距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,在正方形ABCD中,E、F分别是边BC、CD上的点,且∠EAF=45°,把△ADF绕着点A顺时针旋转90°得到△ABG,请直接写出图中所有的全等三角形;

(2)在四边形ABCD中,AB=AD,B=D=90°.

①如图2,若E、F分别是边BC、CD上的点,且2EAF=BAD,求证:EF=BE+DF;

②若E、F分别是边BC、CD延长线上的点,且2EAF=BAD,①中的结论是否仍然成立?请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以O为坐标原点在正方形网格中建立直角坐标系,若每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).

(1)试在y轴上找一点P,使PC+PB的值最小,请在图中标出P点的位置(留下作图痕迹),并求出PC+PB的最小值;

(2)将△ABC先向下平移3个单位,再向右平移4个单位后得到△A1B1C1,请在图中画出△A1B1C1,并写出点A1的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在四边形ABCD中,∠A=90°,AB=3,AD=4,BC=12,CD=13,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县为了了解初中生对安全知识掌握情况,抽取了50名初中生进行安全知识测试,并将测试成绩进行统计分析,绘制成了频数分布表和频数分布直方图(未完成). 安全知识测试成绩频数分布表

组别

成绩x(分数)

组中值

频数(人数)

1

90≤x<100

95

10

2

80≤x<90

85

25

3

70≤x<80

75

12

4

60≤x<70

65

3


(1)完成频数分布直方图;
(2)这个样本数据的中位数在第组;
(3)若将各组的组中值视为该组的平均成绩,则此次测试的平均成绩为
(4)若将90分以上(含90分)定为“优秀”等级,则该县10000名初中生中,获“优秀”等级的学生约为人.

查看答案和解析>>

同步练习册答案