精英家教网 > 初中数学 > 题目详情

【题目】某县为了了解初中生对安全知识掌握情况,抽取了50名初中生进行安全知识测试,并将测试成绩进行统计分析,绘制成了频数分布表和频数分布直方图(未完成). 安全知识测试成绩频数分布表

组别

成绩x(分数)

组中值

频数(人数)

1

90≤x<100

95

10

2

80≤x<90

85

25

3

70≤x<80

75

12

4

60≤x<70

65

3


(1)完成频数分布直方图;
(2)这个样本数据的中位数在第组;
(3)若将各组的组中值视为该组的平均成绩,则此次测试的平均成绩为
(4)若将90分以上(含90分)定为“优秀”等级,则该县10000名初中生中,获“优秀”等级的学生约为人.

【答案】
(1)解:完成图形如下:


(2)2
(3)83.4
(4)2000
【解析】解:(2.)∵共50个人, ∴中位数应该是第25和第26个数据的平均数,
∵第25和第26个数据均落在第2小组,
∴中位数落在第2小组;
(3.)平均数= =83.4;
(4.)该县10000名初中生中,获“优秀”等级的学生约为10000× =2000人,
所以答案是:2,83.4,2000.
【考点精析】本题主要考查了频数分布直方图的相关知识点,需要掌握特点:①易于显示各组的频数分布情况;②易于显示各组的频数差别.(注意区分条形统计图与频数分布直方图)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中有三点A(a,0),B(b,0),C(1,3),且a,b满足|3b+a﹣2|+=0

(1)A,B的坐标;

(2)x负半轴上有一点D,使SDOC=SABC,求点D坐标:

(3)在坐标轴上是否还存在这样的点D,使SDOC=SABC仍然成立?若存在直接写出点D的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形.并用A种纸片一张,B种纸片张,C种纸片两张拼成如图2的大正方形.

(1)请用两种不同的方法求图2大正方形的面积.

方法1:   ;方法2:   

(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.   

(3)根据(2)题中的等量关系,解决如下问题:

①已知:a+b=5,a2+b2=11,求ab的值;

②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,AB=AC,点D是BC的中点,点E在AD上.

(1)求证:BE=CE;

(2)如图2,若BE的延长线交AC于点F,且BFAC,垂足为F,BAC=45°,原题设其它条件不变.求证:AEF≌△BCF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】判断正误,并说明理由(1)给定一组数据,那么这组数据的众数有可能不唯一________;理由________(2)给定一组数据,那么这组数据的平均数一定是这组数据中的一个数________;

理由________(3)n个数的中位数一定是这n个数中的某一个________;理由________(4)9个数据(x1、x2、……、x9其平均数为m)的标准差S, 计算公式为: ________;理由________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.

(1)若折叠后使点B与点A重合,求点C的坐标.

(2)若折叠后点B落在边OA上的点为B′,是否存在点B′,使得四边形BCB′D是菱形?若存在,请说明理由并求出菱形的边长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣4|﹣22+ ﹣tan60°(说明:本题不允许使用计算器计算)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在等腰梯形ABCD中,∠B=60°,P、Q同时从B出发,以每秒1个单位长度分别沿B→A→D→C和B→C→D方向运动至相遇时停止.设运动时间为t(秒),△BPQ的面积为S(平方单位),S与t的函数图象如图2,则下列结论错误的是( )

A.当t=4秒时,S=4
B.AD=4
C.当4≤t≤8时,S=2 t
D.当t=9秒时,BP平分梯形ABCD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ABMN和正方形ACDE,CN、BE交于点P. 求证:∠ANC = ∠ABE.

应用:Q是线段BC的中点,连结PQ. 若BC = 6,则PQ = ___________.

查看答案和解析>>

同步练习册答案