【题目】已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(1)若折叠后使点B与点A重合,求点C的坐标.
(2)若折叠后点B落在边OA上的点为B′,是否存在点B′,使得四边形BCB′D是菱形?若存在,请说明理由并求出菱形的边长;若不存在,请说明理由.
【答案】(1)C(0,1.5);(2)存在点B',使得四边形BCB'D是菱形,此时菱形的边长为20﹣8.
【解析】
(1)折叠后使点B与点A重合,则C在AB的中垂线上,Rt△AOC中利用勾股定理即可得到方程,求得C的坐标;
(2)当B'C∥AB(或B'D∥BO)时,四边形BCB'D是菱形,则△OB'C∽△OAB,依据相似三角形的对应边的比相等即可求得B′C的长度,然后根据△AB'D∽△AOB,即可求得B′D的长.从而证得B'C=BC=B'D=BD.
(1)设C(0,m),(m>0),
则CO=m,
BC=AC=(4﹣m),
在Rt△AOC中,有(4﹣m)2﹣m2=4,
整理得,12m=8,
∴m=1.5,
∴C(0,1.5);
(2)存在,当B'C∥AB(或B'D∥BO)时,四边形BCB'D是菱形,
∵∠AOB=90°,OA=2,OB=4,
∴AB=2,
∵B'C∥AB,
∴△OB'C∽△OAB,
∴,
设B'C=BC=x,则,
解得,x=2,
∵B'C∥AB,
∴∠CBD+∠BCB'=180°,
又∵∠CBD=∠CB'D,
∴∠CB'D+∠BCB'=180°,
∴B'D∥BO,
∴△AB'D∽△AOB,
∴,
设B'D=BD=y,
∴,
解得:y=20﹣8,
∴B'C=BC=B'D=BD,
∴四边形BCB'D是菱形,
∴存在点B',使得四边形BCB'D是菱形,此时菱形的边长为20﹣8.
科目:初中数学 来源: 题型:
【题目】(1)如图1,在正方形ABCD中,E、F分别是边BC、CD上的点,且∠EAF=45°,把△ADF绕着点A顺时针旋转90°得到△ABG,请直接写出图中所有的全等三角形;
(2)在四边形ABCD中,AB=AD,∠B=∠D=90°.
①如图2,若E、F分别是边BC、CD上的点,且2∠EAF=∠BAD,求证:EF=BE+DF;
②若E、F分别是边BC、CD延长线上的点,且2∠EAF=∠BAD,①中的结论是否仍然成立?请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,在平面直角坐标系中,点A,B,C都在坐标轴上,且OA=OB=OC,△ABC的面积为9,点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA,PB,D(﹣m,﹣m)为AC上的点(m>0)
(1)试分别求出A,B,C三点的坐标;
(2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?请说明理由;
(3)如图2,若PA=AB,在第四象限内有一动点Q,连QA,QB,QP,且∠PQA=60°,当Q在第四象限内运动时,求∠APQ与∠PBQ的度数和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了从甲、乙两名射击运动员中选拔一名参加比赛,对这两名运动员进行测试,他们10次射击命中的环数如下:
甲 | 7 | 9 | 8 | 6 | 10 | 7 | 9 | 8 | 6 | 10 |
乙 | 7 | 8 | 9 | 8 | 8 | 6 | 8 | 9 | 7 | 10 |
根据测试成绩,你认为选择哪一名运动员参赛更好?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某县为了了解初中生对安全知识掌握情况,抽取了50名初中生进行安全知识测试,并将测试成绩进行统计分析,绘制成了频数分布表和频数分布直方图(未完成). 安全知识测试成绩频数分布表
组别 | 成绩x(分数) | 组中值 | 频数(人数) |
1 | 90≤x<100 | 95 | 10 |
2 | 80≤x<90 | 85 | 25 |
3 | 70≤x<80 | 75 | 12 |
4 | 60≤x<70 | 65 | 3 |
(1)完成频数分布直方图;
(2)这个样本数据的中位数在第组;
(3)若将各组的组中值视为该组的平均成绩,则此次测试的平均成绩为;
(4)若将90分以上(含90分)定为“优秀”等级,则该县10000名初中生中,获“优秀”等级的学生约为人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAD=∠CAE,AB=AD,AC=AE.且E,F,C,D在同一直线上.
(1)求证:△ABC≌△ADE;
(2)若∠B=30°,∠BAC=100°,点F是CE的中点,连结AF,求∠FAE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:
方案代号 | 月租费(元) | 免费时间(分) | 超过免费时间的通话费(元/分) |
一 | 10 | 0 | 0.20 |
二 | 30 | 80 | 0.15 |
(1)分别写出方案一、二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;
(2)画出(1)中两个函数的图象;
(3)若小明月通话时间为200分钟左右,他应该选择哪种资费方案最省钱.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( )
A. 2 B. C. D. 2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com