精英家教网 > 初中数学 > 题目详情

【题目】已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.

(1)若折叠后使点B与点A重合,求点C的坐标.

(2)若折叠后点B落在边OA上的点为B′,是否存在点B′,使得四边形BCB′D是菱形?若存在,请说明理由并求出菱形的边长;若不存在,请说明理由.

【答案】(1)C(0,1.5);(2)存在点B',使得四边形BCB'D是菱形,此时菱形的边长为20﹣8

【解析】

(1)折叠后使点B与点A重合,则CAB的中垂线上,Rt△AOC中利用勾股定理即可得到方程,求得C的坐标;
(2)当B'C∥AB(或B'D∥BO)时,四边形BCB'D是菱形,则△OB'C∽△OAB,依据相似三角形的对应边的比相等即可求得B′C的长度,然后根据△AB'D∽△AOB,即可求得B′D的长.从而证得B'C=BC=B'D=BD.

(1)设C(0,m),(m>0),

CO=m,

BC=AC=(4﹣m),

Rt△AOC中,有(4﹣m)2﹣m2=4,

整理得,12m=8,

∴m=1.5,

∴C(0,1.5);

(2)存在,当B'C∥AB(或B'D∥BO)时,四边形BCB'D是菱形,

∵∠AOB=90°,OA=2,OB=4,

∴AB=2

∵B'C∥AB,

∴△OB'C∽△OAB,

B'C=BC=x,则

解得,x=2,

∵B'C∥AB,

∴∠CBD+∠BCB'=180°,

∵∠CBD=∠CB'D,

∴∠CB'D+∠BCB'=180°,

∴B'D∥BO,

∴△AB'D∽△AOB,

B'D=BD=y,

解得:y=20﹣8

∴B'C=BC=B'D=BD,

四边形BCB'D是菱形,

存在点B',使得四边形BCB'D是菱形,此时菱形的边长为20﹣8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)如图1,在正方形ABCD中,E、F分别是边BC、CD上的点,且∠EAF=45°,把△ADF绕着点A顺时针旋转90°得到△ABG,请直接写出图中所有的全等三角形;

(2)在四边形ABCD中,AB=AD,B=D=90°.

①如图2,若E、F分别是边BC、CD上的点,且2EAF=BAD,求证:EF=BE+DF;

②若E、F分别是边BC、CD延长线上的点,且2EAF=BAD,①中的结论是否仍然成立?请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,在平面直角坐标系中,点A,B,C都在坐标轴上,且OA=OB=OC,ABC的面积为9,点PC点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA,PB,D(﹣m,﹣m)为AC上的点(m>0)

(1)试分别求出A,B,C三点的坐标;

(2)设点P运动的时间为t秒,问:当t为何值时,DPDB垂直且相等?请说明理由;

(3)如图2,若PA=AB,在第四象限内有一动点Q,连QA,QB,QP,且∠PQA=60°,当Q在第四象限内运动时,求∠APQ与∠PBQ的度数和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了从甲、乙两名射击运动员中选拔一名参加比赛,对这两名运动员进行测试,他们10次射击命中的环数如下:

7

9

8

6

10

7

9

8

6

10

7

8

9

8

8

6

8

9

7

10

根据测试成绩,你认为选择哪一名运动员参赛更好?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县为了了解初中生对安全知识掌握情况,抽取了50名初中生进行安全知识测试,并将测试成绩进行统计分析,绘制成了频数分布表和频数分布直方图(未完成). 安全知识测试成绩频数分布表

组别

成绩x(分数)

组中值

频数(人数)

1

90≤x<100

95

10

2

80≤x<90

85

25

3

70≤x<80

75

12

4

60≤x<70

65

3


(1)完成频数分布直方图;
(2)这个样本数据的中位数在第组;
(3)若将各组的组中值视为该组的平均成绩,则此次测试的平均成绩为
(4)若将90分以上(含90分)定为“优秀”等级,则该县10000名初中生中,获“优秀”等级的学生约为人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAD=∠CAE,AB=AD,AC=AE.且E,F,C,D在同一直线上.

(1)求证:△ABC≌△ADE;

(2)若∠B=30°,∠BAC=100°,点F是CE的中点,连结AF,求∠FAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:

方案代号

月租费(元)

免费时间(分)

超过免费时间的通话费(元/分)

10

0

0.20

30

80

0.15


(1)分别写出方案一、二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;
(2)画出(1)中两个函数的图象;
(3)若小明月通话时间为200分钟左右,他应该选择哪种资费方案最省钱.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2 , 且(x1﹣2)(x1﹣x2)=0,则k的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是(  )

A. 2 B. C. D. 2

查看答案和解析>>

同步练习册答案