【题目】已知:如图1,在平面直角坐标系中,点A,B,C都在坐标轴上,且OA=OB=OC,△ABC的面积为9,点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA,PB,D(﹣m,﹣m)为AC上的点(m>0)
(1)试分别求出A,B,C三点的坐标;
(2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?请说明理由;
(3)如图2,若PA=AB,在第四象限内有一动点Q,连QA,QB,QP,且∠PQA=60°,当Q在第四象限内运动时,求∠APQ与∠PBQ的度数和.
【答案】(1)A(﹣3,0),B(3,0),C(0,﹣3);(2)当t=3秒时, DP与DB垂直且相等,理由见解析;(3)∠APQ+∠PBQ=120°.
【解析】
(1)利用OA=OB=OC,∠AOC=∠BOC=90° 得出∠ACB=90°,再利用△ABC的面积为9,得出OA=OC=OB=3 即可得出各点的坐标;
(2)作DM⊥x轴于点M,作DN⊥y轴于点N,假设出D点的坐标,进而得出△PCD≌△BOD,进而得到∠BDP=∠ODC=90°,即DP⊥DB;
(3)在QA上截取QS=QP,连接PS,利用∠PQA=60°,得出△QSP是等边三角形,进而得出△APS≌△BPQ,从而得出∠APQ+∠PBQ=∠APQ+∠PAS得出答案.
(1)A(﹣3,0),B(3,0),C(0,﹣3);
(2)当t=3秒时, DP与DB垂直且相等.
理由如下:连接OD,作DM⊥x轴于点M,作DN⊥y轴于点N,
∵D(﹣m,﹣m),
∴DM=DN=OM=ON=m,
∴∠DOM=∠DON=45°,而∠ACO=45°,
∴DC=DO,∠ODC=90°
∵∠ODB+∠BDC=∠CDP+∠BDC=90°
∴∠ODB =∠CDP
又 ∵DP=DB
∴ △PCD≌△BOD (SAS)
∴DP=DB,∠PDC=∠BDO,
∴∠BDP=∠ODC=90°,
即DP⊥DB.
∴ PC=BO
∴ t=3 ;
(3)在QA上截取QS=QP,连接PS.
∵∠PQA=60°,
∴△QSP是等边三角形,
∴PS=PQ,∠SPQ=60°,
∵PO是AB的垂直平分线,
∴PA=PB 而PA=AB,
∴△PAB是等边三角形,
∴∠APB=60°,
∴∠APS=∠BPQ,
∴△APS≌△BPQ,
∴∠PAS=∠PBQ,
∴∠APQ+∠PBQ=∠APQ+∠PAS=120°.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠A=∠C,点P在边AB上.
(1)判断四边形ABCD的形状并加以证明;
(2)若AB=AD,以过点P的直线为轴,将四边形ABCD折叠,使点B、C分别落在点B′、C′上,且B′C′经过点D,折痕与四边形的另一交点为Q.
①在图2中作出四边形PB′C′Q(保留作图痕迹,不必说明作法和理由);
②如果∠C=60°,那么 为何值时,B′P⊥AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为( )
A.12
B.15
C.12
D.15
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及平行四边形ABDC的面积.
(2)在y轴上是否存在一点P,连接PA,PB,使=2,若存在这样一点,求出点P的坐标,若不存在,试说明理由.
(3)点P是四边形ABCD边上的点,若△OPC为等腰三角形时,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形.并用A种纸片一张,B种纸片张,C种纸片两张拼成如图2的大正方形.
(1)请用两种不同的方法求图2大正方形的面积.
方法1: ;方法2:
(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.
(3)根据(2)题中的等量关系,解决如下问题:
①已知:a+b=5,a2+b2=11,求ab的值;
②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AB=2,BC=AC,D为AB的中点,E为BC上一点,将△BDE沿DE翻折,得到△FDE,EF交AC于点G,则△ECG的周长是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:BE=CE;
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(1)若折叠后使点B与点A重合,求点C的坐标.
(2)若折叠后点B落在边OA上的点为B′,是否存在点B′,使得四边形BCB′D是菱形?若存在,请说明理由并求出菱形的边长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com