精英家教网 > 初中数学 > 题目详情

【题目】如图1,在ABC中,AB=AC,点D是BC的中点,点E在AD上.

(1)求证:BE=CE;

(2)如图2,若BE的延长线交AC于点F,且BFAC,垂足为F,BAC=45°,原题设其它条件不变.求证:AEF≌△BCF.

【答案】(1)根据等腰三角形三线合一的性质可得BAE=EAC,然后利用“边角边”证明ABE和ACE全等,再根据全等三角形对应边相等证明即可。

(2)先判定ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出EAF=CBF,然后利用“角边角”证明AEF和BCF全等即可。

【解析】

(1)根据等腰三角形三线合一的性质可得BAE=EAC,然后利用“边角边”证明ABE和ACE全等,再根据全等三角形对应边相等证明即可。

(2)先判定ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出EAF=CBF,然后利用“角边角”证明AEF和BCF全等即可。

证明:(1)AB=AC,D是BC的中点,∴∠BAE=EAC。

ABE和ACE中,

∴△ABE≌△ACE(SAS)。BE=CE。

(2)∵∠BAC=45°,BFAF,∴△ABF为等腰直角三角形。AF=BF。

AB=AC,点D是BC的中点,ADBC。∴∠EAF+C=90°。

BFAC,∴∠CBF+C=90°。∴∠EAF=CBF。

AEF和BCF中,

∴△AEF≌△BCF(ASA)。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解全市九年级学生某次数学模拟考试情况,现从全市30000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:

分数段

频数

频率

 x<60

 20

 0.10

 60≤x<70

 28

 0.14

  70≤x<80

 54

 0.27

 80≤x<90

 a

 0.20

  90≤x<100

 24

 0.12

  100≤x<110

 18

 b

  110≤x<120

 16

 0.08

请根据以上图表提供的信息,解答下列问题:

(1)表格中的a=   ,b=   

(2)请补全频数分布直方图;

(3)如果把成绩在90分以上(含90分)定为优秀,那么该市30000名九年级学生中本次数学模拟考试成绩为优秀的学生约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个菱形被一条直线分成面积为x,y的两部分,则y与x之间的函数图象只可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,线段cm,点C从点P出发以1cm/s的速度沿AB向左运动,点D从点B出发以2cm/s的速度沿AB向左运动(点C在线段AP上,D在线段BP上)

(1)若CD 运动到任意时刻都有PD=2AC试说明PB=2AP

(2)在(1)的条件下,Q是直线AB上一点,若AQ-BQ=PQ,求PQ的值;

(3)在(1)的条件下,若CD运动了一段时间后恰有AB=2CD,这时点C停止运动,点D继续在线段PB上运动,MN 分别是CDPD的中点,求MN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买5050张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;

(1)贺年卡的零售价是多少?

(2)班里有多少学生?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(m,n),且满足m-2+(n-2)2=0,AABy,垂足为B.

(1)A点坐标;

(2)如图1,分别以AB,AO为边作等边ABCAOD,试判定线段ACDC的数量关系和位置关系,并说明理由

(3)如图2,AAEx,垂足为E,FG分别为线段OEAE上的两个动点 (不与端点重合),满足∠FBG=45°,OF=a,AG=b,FG=c,试探究的值是 否为定值?如果是,直接写出此定值:如果不是,请举例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,BECD,BE=DE,BC=DA.

求证:(1)BEC≌△DAE;

(2)DFBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题探究:
【1】新知学习
⑴梯形的中位线:连接梯形两腰中点的线段叫做梯形的中位线.
⑵梯形的中位线性质:梯形的中位线平行于两底,并且等于两底和的一半.
⑶形如分式 (m为常数,且m>0),若x>0,则 ,并且有下列结论:
当x 逐渐增大时,分母x+2m逐渐增大,分式 的值逐渐减少并趋于0,但仍大于0.当x 逐渐减少时,分母x+2m逐渐减少,分式 的值逐渐增大并趋于 ,即趋于 ,但仍小于
【2】问题解决
如图2,已知在梯形ABCD中,AD∥BC,AD<BC,E、F分别是AB、CD的中点.

(1)设AD=7,BC=17,求 的值.
(2)设AD=a(a为正的常数),BC=x,请问:当BC的长不断增大时, 的值能否大于或等于3,试证明你的结论.
(3)进一步猜想:任何一个梯形的中位线所分成的两部分图形的面积的比值所在的范围是什么,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示AOB是平角OMON分别是AOCBOD 的平分线

1AOC=40°BOD=60°MON的度数

2COD=90°求出MON的度数

查看答案和解析>>

同步练习册答案