精英家教网 > 初中数学 > 题目详情

【题目】如图所示,线段cm,点C从点P出发以1cm/s的速度沿AB向左运动,点D从点B出发以2cm/s的速度沿AB向左运动(点C在线段AP上,D在线段BP上)

(1)若CD 运动到任意时刻都有PD=2AC试说明PB=2AP

(2)在(1)的条件下,Q是直线AB上一点,若AQ-BQ=PQ,求PQ的值;

(3)在(1)的条件下,若CD运动了一段时间后恰有AB=2CD,这时点C停止运动,点D继续在线段PB上运动,MN 分别是CDPD的中点,求MN的值.

【答案】(1)见解析;(2)PQ=2m6cm;(3)MN=

【解析】

(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;
(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQAB的关系;
(3)当C点停止运动时,有CD=AB,故AC+BD=AB,再设BD=a,PD=4-a,CD=5-a即可列式得出答案.

(1) 根据 C,D 的运动速度知:BD=2PC

又∵PD=2AC,

BD+PD=2(PC+AC) ,即 PB=2AP.

(2) 如图:

AQ-BQ=PQ,

AQ=PQ+BQ ;

AQ=AP+PQ ,

AP=BQ,

PQ=AB=2cm ;

当点 Q AB 的延长线上时,如图,

AQ-AB=PQ ,且AQ-BQ=PQ ,AP=BQ,

AQ-BQ=PQ=AB=6cm .

综上所述,PQ=2cmPQ=6cm .

(3)

C 点停止运动时,有 CD=AB=3cm,

AC+BD=AB=3cm ,

D点继续运动,

BD=a,PD=4-a,CD=5-a

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲乙两地相距200km快车速度为120 ,慢车速度为80 ,慢车从甲地出发,快车从乙地出发,

1)如果两车同时出发,相向而行,出发后几时两车相遇?相遇时离甲地多远?

2)如果两车同时出发,同向(从乙开始向甲方向)而行,出发后几时两车相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒4个单位长度的速度在数轴上由AB运动,当点P到达点B后立即返回,仍然以每秒4个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒).

(1)求t=1时点P表示的有理数;

(2)求点P与点B重合时的t值;

(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离(用含t的代数式表示);

(4)当点P表示的有理数与原点的距离是2个单位长度时,请求出所有满足条件的t值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

AB在数轴上分别表示两个数abAB两点间的距离记为|AB|,O表示原点.当AB两点中有一点在原点时,不妨设点A为原点,如图1,则|AB|=|OB|=|b|=|a-b|;当AB两点都不在原点时,

①如图2,若点AB都在原点的右边时,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;

②如图3,若点AB都在原点的左边时,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;

③如图4,若点AB在原点的两边时,|AB|=|OB|+|OA|=|b|+|a|=-b+a=|a-b|.

回答下列问题:

(1)综上所述,数轴上AB两点间的距离为|AB|=______.

(2)若数轴上的点A表示的数为3,点B表示的数为-4,则AB两点间的距离为______;

(3)若数轴上的点A表示的数为x,点B表示的数为-2,则|AB|=______,若|AB|=3,则x的值为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,ECD边上一点,FBC延长线上一点,CE=CF.

(1)求证:△BCE≌△DCF;

(2)若∠BEC=60°,求∠EFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,BAC=90°,直角∠EPF的顶点PBC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;AE=CF;③△EAF是等腰直角三角形;④SABC=2S四边形AEPF,上述结论正确的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,AB=AC,点D是BC的中点,点E在AD上.

(1)求证:BE=CE;

(2)如图2,若BE的延长线交AC于点F,且BFAC,垂足为F,BAC=45°,原题设其它条件不变.求证:AEF≌△BCF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.

(1)求这个多边形是几边形;

(2)求这个多边形的每一个内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OM是AOC的平分线,ON是BOC的平分线.

(1)如图1,当AOB是直角,BOC=60°时,MON的度数是多少?

(2)如图2,当AOB=αBOC=60°时,猜想MON与α的数量关系;

(3)如图3,当AOB=αBOC=β时,猜想MON与α、β有数量关系吗?如果有,指出结论并说明理由.

查看答案和解析>>

同步练习册答案