精英家教网 > 初中数学 > 题目详情

【题目】一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.

(1)求这个多边形是几边形;

(2)求这个多边形的每一个内角的度数.

【答案】(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.

【解析】

(1)先设内角为x,根据题意可得:外角为,根据相邻内角和外角的关系可得:,x+ =180°,从而解得:x=120°,即外角等于60°,根据外角和等于360°可得这个多边形的边数为:=6,

(2)先设内角为x,根据题意可得:外角为,根据相邻内角和外角的关系可得:,x+ =180°,从而解得内角:x=120°,内角和=(6﹣2)×180°=720°.

(1)设内角为x,则外角为,

由题意得,x+ =180°,

解得:x=120°,

=60°,

这个多边形的边数为:=6,

:这个多边形是六边形,

(2)设内角为x,则外角为,

由题意得: x+ =180°,

解得:x=120°,

:这个多边形的每一个内角的度数是120度.

内角和=(6﹣2)×180°=720°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小亮房间窗户的窗帘如图1所示,它是由两个四分之一圆组成(半径相同)

(1)用代数式表示窗户能射进阳光的面积是__________.(结果保留

(2)当时,求窗户能射进阳光的面积是多少?(取

(3)小亮又设计了如图2的窗帘(由一个半圆和两个四分之一圆组成,半径相同),请你帮他算一算此时窗户能射进阳光的面积是否更大?如果更大,那么大多少?(结果保留

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,线段cm,点C从点P出发以1cm/s的速度沿AB向左运动,点D从点B出发以2cm/s的速度沿AB向左运动(点C在线段AP上,D在线段BP上)

(1)若CD 运动到任意时刻都有PD=2AC试说明PB=2AP

(2)在(1)的条件下,Q是直线AB上一点,若AQ-BQ=PQ,求PQ的值;

(3)在(1)的条件下,若CD运动了一段时间后恰有AB=2CD,这时点C停止运动,点D继续在线段PB上运动,MN 分别是CDPD的中点,求MN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(m,n),且满足m-2+(n-2)2=0,AABy,垂足为B.

(1)A点坐标;

(2)如图1,分别以AB,AO为边作等边ABCAOD,试判定线段ACDC的数量关系和位置关系,并说明理由

(3)如图2,AAEx,垂足为E,FG分别为线段OEAE上的两个动点 (不与端点重合),满足∠FBG=45°,OF=a,AG=b,FG=c,试探究的值是 否为定值?如果是,直接写出此定值:如果不是,请举例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,BECD,BE=DE,BC=DA.

求证:(1)BEC≌△DAE;

(2)DFBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两点P,Q分别从点A和点C同时出发,沿边AB,CB向终点B移动.其中点P,Q的速度分别为2cm/s,1cm/s,且当其中一点到达终点时,另一点也随之停止移动.设P,Q两点移动时间为x s.

(1)用含x的代数式表示BQ、BP的长度,并求x的取值范围.
(2)设四边形APQC的面积为y(cm2),求y与x的函数关系式?
(3)是否存在这样的x,使得四边形APQC的面积是△ABC面积的 ?如果存在,求出x的值;不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题探究:
【1】新知学习
⑴梯形的中位线:连接梯形两腰中点的线段叫做梯形的中位线.
⑵梯形的中位线性质:梯形的中位线平行于两底,并且等于两底和的一半.
⑶形如分式 (m为常数,且m>0),若x>0,则 ,并且有下列结论:
当x 逐渐增大时,分母x+2m逐渐增大,分式 的值逐渐减少并趋于0,但仍大于0.当x 逐渐减少时,分母x+2m逐渐减少,分式 的值逐渐增大并趋于 ,即趋于 ,但仍小于
【2】问题解决
如图2,已知在梯形ABCD中,AD∥BC,AD<BC,E、F分别是AB、CD的中点.

(1)设AD=7,BC=17,求 的值.
(2)设AD=a(a为正的常数),BC=x,请问:当BC的长不断增大时, 的值能否大于或等于3,试证明你的结论.
(3)进一步猜想:任何一个梯形的中位线所分成的两部分图形的面积的比值所在的范围是什么,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.
(1)求证:△AEF≌△DCE;
(2)若CD=1,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).

查看答案和解析>>

同步练习册答案