精英家教网 > 初中数学 > 题目详情

【题目】如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).

【答案】11
【解析】解:如图,作PC⊥AB于C,
在Rt△PAC中,∵PA=18,∠A=30°,
∴PC= PA= ×18=9,
在Rt△PBC中,∵PC=9,∠B=55°,
∴PB= ≈11,
答:此时渔船与灯塔P的距离约为11海里.
故答案为11.

作PC⊥AB于C,先解Rt△PAC,得出PC= PA=9,再解Rt△PBC,得出PB= ≈11.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.

(1)求这个多边形是几边形;

(2)求这个多边形的每一个内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OM是AOC的平分线,ON是BOC的平分线.

(1)如图1,当AOB是直角,BOC=60°时,MON的度数是多少?

(2)如图2,当AOB=αBOC=60°时,猜想MON与α的数量关系;

(3)如图3,当AOB=αBOC=β时,猜想MON与α、β有数量关系吗?如果有,指出结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣ x2+bx+c与y轴交于点C,与x轴交于A、B两点(点A在原点左侧,点B在原点右侧),且∠ACB=90°,tan∠BAC= . ①求抛物线的解析式;
②若抛物线顶点为P,求四边形APCB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y=ax2+bx+c与x轴相交于点B(1,0)和点C(9,0)两点,与y轴的负半轴相交于A点,过A、B、C三点的⊙P与y轴相切于点A,M为y轴正半轴上的一个动点,直线MB交⊙P于点D,交抛物线于点N.

(1)求点A坐标和⊙P的半径;
(2)求抛物线的解析式;
(3)当△MOB与以点B、C、D为顶点的三角形相似时,求△CDN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(4,0),点B从原点出发,沿y轴负方向以每秒1个单位长度的速度运动,分别以OB,AB为直角边在第三、第四象限作等腰RtOBE,等腰RtABF,连结EFy轴于P点,当点By轴上运动时,经过t秒时,点E的坐标是_____(用含t的代数式表示),PB的长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=kx+b的图象经过点A(0,9),并且与直线y=x相交于点B,与x轴相交于点C.

(1)若点B的横坐标为3,求B点的坐标和k,b的值;

(2)在y轴上是否存在这样的点P,使得以点P,B,A为顶点的三角形是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.

(3)在直线y=kx+b上是否存在点Q,使△OBQ的面积等于?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:

(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:   

(2)仔细观察,在图2中“8字形”的个数:   

(3)在图2中,若∠D=40°,∠B=36°,∠DAB和BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求P的度数;

(4)如果图2中D和B为任意角时,其他条件不变,试问P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(
A.2×3=0
B.31=﹣3
C.x÷x=x
D.(﹣a)2=a2

查看答案和解析>>

同步练习册答案