精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=﹣ x2+bx+c与y轴交于点C,与x轴交于A、B两点(点A在原点左侧,点B在原点右侧),且∠ACB=90°,tan∠BAC= . ①求抛物线的解析式;
②若抛物线顶点为P,求四边形APCB的面积.

【答案】解:①令x=0则y=﹣ x2+bx+c=c, ∴C(0,c),
∵tan∠BAC=
∴A(﹣2c,0),
∠ACB=90°,
∴∠BCO=∠BAC,
∴OB= OC= c,
∴B( c,0),
把A(﹣2c,0),B( c,0)代入y=﹣ x2+bx+c=c得,
解得:
求抛物线的解析式为y=﹣ x2 x+
②y=﹣ x2 x+ =﹣ (x+ 2+
∴P(﹣ ),
令﹣ x2 x+ =0,解得:x1=﹣1,x2=
∴A(﹣1,0),B( ,0)
连接AP,PC,CB,PO,则四边形APCB的面积=SAOP+SPOC+SCOB= ×1× + × × + × × =
【解析】①由y=﹣ x2+bx+c=c,可求得C(0,c),由tan∠BAC= ,可设A(﹣2c,0),B( c,0),把A(﹣2c,0),B( c,0)代入y=﹣ x2+bx+c=c求得b,c,即可求得求抛物线的解析式; ②解方程﹣ x2 x+ =0可求得A,B点的坐标,由于四边形APCB的面积=SAOP+SPOC+SCOB , 根据三角形的面积公式即可求得结论.
【考点精析】认真审题,首先需要了解抛物线与坐标轴的交点(一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.),还要掌握解直角三角形(解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法))的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知A(m,n),且满足m-2+(n-2)2=0,AABy,垂足为B.

(1)A点坐标;

(2)如图1,分别以AB,AO为边作等边ABCAOD,试判定线段ACDC的数量关系和位置关系,并说明理由

(3)如图2,AAEx,垂足为E,FG分别为线段OEAE上的两个动点 (不与端点重合),满足∠FBG=45°,OF=a,AG=b,FG=c,试探究的值是 否为定值?如果是,直接写出此定值:如果不是,请举例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.
(1)求证:△AEF≌△DCE;
(2)若CD=1,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C

处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最

短距离为 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示AOB是平角OMON分别是AOCBOD 的平分线

1AOC=40°BOD=60°MON的度数

2COD=90°求出MON的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】材料:

一般地,n个相同的因数a相乘:记为.如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).

一般地,若an=b(a>0a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).

问题:

(1)计算以下各对数的值:log24=______,log216=______,log264=______.

(2)观察(1)中三数4、16、64之间满足怎样的关系式为______log24、log216、log264之间又满足怎样的关系式:______

(3)(2)的结果,你能归纳出一个一般性的结论吗?logaM+logaN=______(a>oa≠1,M>0,N>0).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE是ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若CEF的面积为12cm2,则SDGF的值为( )

A.4cm2 B.6cm2 C.8cm2 D.9cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为3EF分别是ABBC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为

查看答案和解析>>

同步练习册答案