精英家教网 > 初中数学 > 题目详情
如图,已知正方形纸片ABCD的边长为4,⊙O的半径为1,圆心在正方形的中心上,将纸片按图示方式折叠,使EA′恰好与⊙O相切于点A′,延长FA′交CD边于点G,则A′G的长是______.
如图,作FS⊥CD于点S点,
由翻折可知:△AFE≌△FA′E,
∴FA=FA′,
∵四边形ADSF是矩形,
∴AF=SD,AD=FS,
又正方形是以O为对称中心的中心对称图形,
∴AF=CG,FO=OG=
1
2
FG,
设AF=A′F=DS=CG=x,
则GS=4-2x,FO=FA′+OA′=1+x,FG=2(1+x);
在Rt△FSG中,根据勾股定理得FG2=GS2+FS2
即[2(1+x)]2=(4-2x)2+42
解得x=
7
6

∴A′G=FG-FA′=2(1+x)-x=
19
6

故答案为:
19
6

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O的半径OA=
5
,弦AB=4,点C在弦AB上,以点C为圆心,CO为半径的圆与线段OA相交于点E.
(1)求cosA的值;
(2)设AC=x,OE=y,求y与x之间的函数解析式,并写出定义域;
(3)当点C在AB上运动时,⊙C是否可能与⊙O相切?如果可能,请求出当⊙C与⊙O相切时的AC的长;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PE是⊙O的切线,E为切点,PAB、PCD是割线,AB=35,CD=50,AC:DB=1:2,则PA=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是⊙O的内接正方形,延长AB到E,使BE=AB,连接CE.
(1)求证:直线CE是⊙O的切线;
(2)连接OE交BC于点F,若OF=2,求EF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是劣弧BC的中点,过点P作⊙O的切线交AB延长线于点D.
(1)求证:DPBC;
(2)求DP的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA、PB是⊙O的切线,点A、B为切点,AC是⊙O的直径,∠BAC=20°,则∠P的大小是______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=120°,AC=BC,AB=6,O为AB的中点,且以O为圆心的半圆与AC,BC分别相切于点D,E;
(1)求半圆O的半径;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6.点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是______.

查看答案和解析>>

同步练习册答案