精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F.
(1)求DC的长和旋转的角度n;
(2)求图中阴影部分的面积.
分析:(1)先求出∠B=60°,再根据旋转的性质得到DC=BD,然后根据等边三角形的判定得到△BCD是等边三角形,从而可得到n=∠BCD=60°;
(2)先求出DF⊥AC,然后根据30°角所对的直角边等于斜边的一半求出DF的长,根据勾股定理求出AC的长度,然后根据等腰三角形三线合一的性质求出FC的长,然后利用三角形的面积公式进行计算即可得解.
解答:解:(1)根据旋转的性质可得DC=CB=2,
∵∠ACB=90°,∠A=30°,
∴∠B=90°-30°=60°,
∴△BCD是等边三角形,
∴旋转的角度n=∠BCD=60°;

(2)∵∠ACB=90°,∠A=30°,BC=2,
∴AB=2BC=4,
∴AD=4-2=2,
∴AD=CD,
∴∠A=∠DCA=30°,
又∵∠EDC=∠B=60°,
∴∠CFD=180°-30°-60°=90°,
∴DF⊥AC,
∵BC=2,AB=4,
∴AC=
42-22
=2
3

∴AF=FC=
1
2
AC=
3

∴DF=1,
阴影部分的面积=
1
2
AF•DF=
1
2
3
点评:本题考查了30°角所对的直角边等于斜边的一半的性质,等边三角形的判定与性质,勾股定理以及三角形的面积公式,旋转变换的性质,综合题,但难度不大,稍微细心便不难解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案