精英家教网 > 初中数学 > 题目详情

问题背景

1.(1)如图1,△ABC中,DEBC分别交ABACDE两点,过点EEFABBC于点F.请按图示数据填空:

四边形DBFE的面积     

EFC的面积S1     

ADE的面积S2     

探究发现

2.(2)在(1)中,若DEBC间的距离为.请证明S2=4S1 S2

拓展迁移

3.(3)如图2,平行四边形DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积.

 

【答案】

 

1.解: (1).       ……3分

2.(2)证明:∵DE∥BC,EF∥AB,

∴四边形DBFE为平行四边形,.∴△ADE∽△EFC.

.∵,     ∴

.而,   ∴

3.(3)解:过点G作GH∥AB交BC于H,则四边形DBHG为平行四边形.

∵四边形DEFG为平行四边形,∴. 

.∴.    

∴△DBE≌△GHF.∴△GHC的面积为

由(2)得,平行四边形DBHG的面积为

∴△ABC的面积为

【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

问题背景  某课外学习小组在一次学习研讨中,得到如下两个命题:
①如图1,O是正三角形ABC的中心,∠MON分别与AB、BC交于点P,Q,若∠MON=120°,则四边形OPBQ的面积等于三角形ABC面积的三分之一.
②如图2,O是正方形ABCD的中心,∠MON分别与AB、BC交于点P,Q,若∠MON=90°,则四边形OPBQ的面积等于正方形ABCD面积的四分之一.
然后运用类比的思想提出了如下的命题:
③如图3,O是正五边形ABCDE的中心,∠MON分别与AB、BC交于点P,Q,若∠MON=72°,则四边形OPBQ的面积等于五边形ABCDE面积的五分之一.
任务要求
(1)请你从①、②、③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
如图4,在正n(n≥3)边形ABCDEF…中,O是中心,∠MON分别与AB、BC交于点P,Q,若∠MON 等于多少度时,则四边形OPBQ的面积等于正n边形ABCDE…面积的n分之一?(不要求证明)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

16、问题背景:
A、B两家超市都有某种品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为50元,每个乒乓球的标价都为2元.现两家超市正在促销,A超市所有商品均打九折销售,而B超市买一副乒乓球拍送4个乒乓球.若仅考虑购买球拍和乒乓球的费用.
(1)如果只在某一家超市购一副乒乓球拍和10个乒乓球,问去A超市还是B超市买更合算?
迁移运用:
(2)某乒乓球训练馆准备购买n副该种品牌的乒乓球拍,每副球拍配k(k≥4)个乒乓球.如果只在某一家超市购买,问去A超市还是B超市买更合算?
拓展延伸:
(3)若乒乓球训练馆准备购买n副该种品牌的乒乓球拍,每副球拍配20个乒乓球.请通过计算设计出最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题背景:如图,点C是半圆O上一动点(点C与A、B不重合),AB=2,连接AC、BC、OC,将△AOC沿直线AC翻折得△ADC,点、E、F、G、H分别是DA、AO、OC、CD的中点.
(1)猜想证明:猜想四边形AOCD以及四边形EFGH的形状,并证明你的结论;
(2)拓展探究:探究点C在半圆弧上哪个位置时,四边形EFGH面积最大?求出这个最大精英家教网值,判断此时四边形EFGH的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•达州)【问题背景】
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:s=-x2+
1
2
x(x
>0),利用函数的图象或通过配方均可求得该函数的最大值.
【提出新问题】
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
【分析问题】
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:y=2(x+
1
x
)
(x>0),问题就转化为研究该函数的最大(小)值了.
【解决问题】
借鉴我们已有的研究函数的经验,探索函数y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数y=2(x+
1
x
)
(x>0)的图象:
 x  
1
4
 
1
3
 
1
2
 1  2  3  4
 y              
(2)观察猜想:观察该函数的图象,猜想当x=
1
1
时,函数y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理论证:问题背景中提到,通过配方可求二次函数s=-x2+
1
2
x(x
>0)的最大值,请你尝试通过配方求函数y=2(x+
1
x
)
(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,x=(
x
)2

查看答案和解析>>

科目:初中数学 来源: 题型:

问题背景:
在△ABC中,AB、BC、AC三边的长分别为
5
10
13
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.我们把上述求△ABC面积的方法叫做构图法.
(1)若△ABC三边的长分别为
5
a,2
2
a,
17
a
(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
思维拓展:
(2)若△ABC三边的长分别为
m2+16n2
9m2+4n2
,2
m2+n2
(m>0,n>0,且m≠n),试运用构图法求出这三角形的面积.
探索创新:
(3)已知a、b都是正数,a+b=3,求当a、b为何值时
a2+4
+
b2+25
有最小值,并求这个最小值.
(4)已知a,b,c,d都是正数,且a2+b2=c2,c
a2-d2
=a2,求证:ab=cd.

查看答案和解析>>

同步练习册答案