精英家教网 > 初中数学 > 题目详情

已知在Rt△ABC中,∠A=90°,两直角边分别为5,12,以A为圆心与BC相切的圆半径是


  1. A.
    数学公式
  2. B.
    2
  3. C.
    数学公式
  4. D.
    5
C
分析:根据切线的性质,得出AD⊥BC,再利用三角形面积即可得出.
解答:解:根据题意画出图象,假设以A为圆心与BC相切于点D,
连接AD,∵两直角边分别为5,12,以A为圆心与BC相切,
∴AD⊥BC,
∴AB×AC=AD×BC,
∵AB=5,BC=12,BC=13,
∴AD=
故选:C.
点评:此题主要考查了切线的性质定理,根据已知得出AB×AC=AD×BC是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在Rt△ABC中,∠ACB=90°,CD是AB上的中线,BC=2
5
,cos∠ACD=
2
3
,则CD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,那么BC=
8
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知在Rt△ABC中,∠C=90°,sinA=
513
,求tanB;
(2)如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;
(2)连接DE,当t为何值时,△DEF为直角三角形?
(3)如图②,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形 AEA′D为菱形?

查看答案和解析>>

同步练习册答案