精英家教网 > 初中数学 > 题目详情

如图,在直角梯形ABCD中,∠D =∠BCD = 90°,∠B = 60°,AB = 6,AD = 9,点ECD上的一个动点(E不与D重合),过点EEFAC,交AD于点F(当E运动到C时,EFAC重合),把△DEF沿着EF对折,点D的对应点是点G,如图①.

⑴ 求CD的长及∠1的度数;
⑵ 设DE = x,△GEF与梯形ABCD重叠部分的面积为y.求yx之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?
⑶ 当点G刚好落在线段BC上时,如图②,若此时将所得到的△EFG沿直线CB向左平移,速度为每秒1个单位,当E点移动到线段AB上时运动停止.设平移时间为t(秒),在平移过程中是否存在某一时刻t,使得△ABE为等腰三角形?若存在,请直接写出对应的t的值;若不存在,请说明理由.

30;当时,y的值最大为

解析试题分析:⑴ 过点A作AH⊥BC于点H ,则AH=AB·=

∴CD=AH= 
   ∴∠CAD=30°
∵EF∥AC   ∴∠1=∠CAD=30°      4分
⑵当点G恰好在BC上时,由折叠可知 △FGE≌△FDE  

∴ GE="DE" =x,∠FEG=∠FED=60°,∴∠GEC=60°
因为△CEG是直角三角形, ∴∠EGC="30°"
∴在Rt△CEG中,EC=EG=x
由DE+EC=CD 得 , ∴x=
① 当

∴当x=时, =
② 当<x≤时,设FG,EG分别交BC于点M、N

∵DE=x  ∴EC=,NE=2
∴NG=GE-NE==
又∵∠MNG=∠ENC=30°,∠G=90°
∴MG==
 


 
∴当时,= 
综合两种情形:由于 ∴ 当时,y的值最大为  9分
(3)由题意可知:AB=6,分三种情况:
①当AE=BE时,t=9
②当AB=AE时, t=9-2
③当BA=BE时,t=12-
考点:二次函数的综合题
点评:此题将用待定系数法求二次函数解析式、动点问题和最小值问题相结合,有较大的思维跳跃,考查了同学们的应变能力和综合思维能力,是一道好题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,则梯形ABCD的高CD≈
3.1
cm.(结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•大连)如图,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE为直径的⊙O交AB于点F,交CD于点G、H.过点F引⊙O的切线交BC于点N.
(1)求证:BN=EN;
(2)求证:4DH•HC=AB•BF;
(3)设∠GEC=α.若tan∠ABC=2,求作以tanα、cotα为根的一元二次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,点E、F分别是腰AD、BC上的动点,点G在AB上,且四边形AEFG是矩形.设FG=x,矩形AEFG的面积为y.
(1)求y与x之间的函数关式,并写出自变量x的取值范围;
(2)在腰BC上求一点F,使梯形ABCD的面积是矩形AEFG的面积的2倍,并求出此时BF的长;
(3)当∠ABC=60°时,矩形AEFG能否为正方形?若能,求出其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以2cm/s的速度向点B移动,点Q以1cm/s的速度向点D移动,当一个动点到达终点时另一个动点也随之停止运动.
(1)经过几秒钟,点P、Q之间的距离为5cm?
(2)连接PD,是否存在某一时刻,使得PD恰好平分∠APQ?若存在,求出此时的移动时间;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案