精英家教网 > 初中数学 > 题目详情
问题:你能比较两个数20122013与20132012的大小吗为了解决这个问题,我们先把它抽象成这样的问题:写成它的一般形式,即比较nn+1和(n+1)n的大小(即是自然数).然后,我们分析n=1,n=2,n=3…这些简单情形入手,从而发现规律,经过归纳,才想出结论.
(1)通过计算,比较下列各组中两个数的大小
①12
21  ②23
32    ③34
43    ④45
54
⑤56
65  ⑥67
76
(2)从第(1)题的结果经过归纳,可以猜想nn+1和(n+1)n的大小关系;
(3)根据下面归纳猜想得到的一般结论,试比较下列两个数的大小:20122013
20132012
分析:(1)根据有理数的乘方分别计算即可比较出大小;
(2)根据n的取值范围讨论解答;
(3)根据(2)的结论判断出大小.
解答:解:(1)①∵12=1,21=2,
∴12<21
②∵23=8,32=9,
∴23<32
③∵34=81,43=64,
∴34>43
④∵45=1024,54=625,
∴45>54
⑤∵56=15625,65=7776,
∴56>65
⑥∵67=279936,76=117649,
∴67>76

(2)n<3时,nn+1<(n+1)n
n≥3时,nn+1>(n+1)n

(3)∵2012>3,
∴20122013>20132012
故答案为:(1)<、<、>、>、>、>;(3)>.
点评:本题考查了有理数的乘方,有理数的大小比较,熟记乘方的概念并准确计算是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、问题:你能比较两个数20022003与20032002的大小吗?为了解决这个问题,我们先把它抽象成这样的问题:写成它的一般形式,即比较nn+1和(n+1)n的大小(n是自然数).然后,我们分析n=1,n=2,n=3…这些简单情形入手,从而发现规律,经过归纳,才想出结论.
(1)通过计算,比较下列各组中两个数的大小(在空格中填“<”“>”“=”)
①12<21②23<32③34>43④45>54
⑤56>65⑥66>75
(2)从第(1)题的结果经过归纳,可以猜想出nn+1和(n+1)n的大小关系;
(3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小:20022003>20032002

查看答案和解析>>

科目:初中数学 来源: 题型:

(一)问题:你能比较两个数20092010和20102009的大小吗?
为了解决这个问题,我们先把它抽象成数学问题,写出他的一般形式,即比较nn+1和(n+1)n的大小(n为自然数),然后我们分析这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
(1)通过计算,比较下列各组数的大小:
①12
 
21;②23
 
32;③34
 
43;④45
 
54;⑤56
 
65
(2)从第(1)题的结果经过归纳,可以猜想出nn+1
 
(n+1)n(n≥3)
(3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小:
①20092010
 
20102009;②-20092010
 
-20102009
(二)请比较大小:
231981+1
231982+1
 
231982+1
231983+1
,并写出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:你能比较两个数20062007与20072006的大小吗?为了解决问题,首先把它抽象成数学问题,写出它的一般形式,即比较nn+1与(n+1)n的大小(n是正整数),然后,从分析n=1,n=2,n=3,…,这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
(1)通过计算,比较下列各组中两个数的大小(填“>”,“<”,“=”)
①12
21; ②23
32;③34
43;④45
54;⑤56
65; …
(2)根据上面的归纳猜想得到的一般结论,试比较下面两个数的大小:20062007
20072006
(3)从第(1)题的结果经过归纳,可以猜想出nn+1与(n+1)n的大小关系是
当n=1或2时,nn+1<(n+1)n;当n>2的整数时,nn+1>(n+1)n
当n=1或2时,nn+1<(n+1)n;当n>2的整数时,nn+1>(n+1)n

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:你能比较两个数20122013和20132012的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(n是自然数),然后我们从分析n=1,n=2,n=3,…这些简
单情形入手,从中发现规律,经过归纳,猜想出结论.
(1)通过计算,比较下列各组中两个数的大小:
①12
21
②23
32
③34
43
④45
54
⑤56
65 
⑥67
76

(2)从第(1)题的结果经过归纳,可以猜想出nn+1和(n+1)n(n≥3)的大小关系式是
nn+1>(n+1)n
nn+1>(n+1)n

(3)根据上面归纳猜想得到的一般结论,试比较两个数的大小:20122013
20132012(填”>”,”<”,“=”)

查看答案和解析>>

同步练习册答案