精英家教网 > 初中数学 > 题目详情

如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.
(1)求证:∠BCA=∠BAD;
(2)求DE的长;
(3)求证:BE是⊙O的切线.

(1)证明:∵BD=BA,
∴∠BDA=∠BAD,
∵∠BCA=∠BDA(圆周角定理),
∴∠BCA=∠BAD.

(2)解:∵∠BDE=∠CAB(圆周角定理),∠BED=∠CBA=90°,
∴△BED∽△CBA,
=,即=
解得:DE=

(3)证明:连结OB,OD,

在△ABO和△DBO中,∵
∴△ABO≌△DBO,
∴∠DBO=∠ABO,
∵∠ABO=∠OAB=∠BDC,
∴∠DBO=∠BDC,
∴OB∥ED,
∵BE⊥ED,
∴EB⊥BO,
∴OB⊥BE,
∴BE是⊙O的切线.
分析:(1)根据BD=BA得出∠BDA=∠BAD,再由∠BCA=∠BDA即可得出结论;
(2)判断△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.
(3)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.
点评:本题考查了切线的判定及圆周角定理的知识,综合考查的知识点较多,解答本题要求同学们熟练掌握一些定理的内容.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,CD是Rt△ABC斜边上的高,则图中相似三角形的对数有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,CD是Rt△ABC斜边上的高,E为AC的中点,ED交CB的延长线于F.
求证:BD•CF=CD•DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,M是Rt△ABC斜边AB上的中点,D是边BC延长线上一点,∠B=2∠D,AB=16cm,求线段CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•顺义区二模)已知:如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是⊙O外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线; 
(2)已知PA=2
3
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD是Rt△DAB和Rt△DCB的公共边,∠A、∠C是直角,∠ADC=60°,BC=2cm,AD=5
3
cm,求DB、DC的长. (直角三角形中,30°角所对边等于斜边的一半)

查看答案和解析>>

同步练习册答案