【题目】如图,已知△ABC中,∠ACB=90°,CE是中线,△ACD与△ACE关于直线AC对称.
(1)求证:四边形ADCE是菱形;
(2)求证:BC=ED.
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:
(1)由△ABC中,∠ACB=90°,CE是中线,可证得:CE=AE,再由△ACD与△ACE关于直线AC对称,可得:AD=AE=CE=CD,从而可得四边形ADCE是菱形;
(2)由(1)可得DC∥BE,DC=AE=BE,从而可证得:四边形BCDE是平行四边形,就可得到:BC=DE.
试题解析:
(1)证明:∵∠C=90°,点E为AB的中点,
∴EA=EC,
∵△ACD与△ACE关于直线AC对称.
∴△ACD≌△ACE,
∴EA=EC=DA=DC,
∴四边形ADCE是菱形;
(2)∵四边形ADCE是菱形,
∴CD∥AE且CD=AE,
∵AE=EB,
∴CD∥EB且CD=EB
∴四边形BCDE为平行四边形,
∴DE=BC.
科目:初中数学 来源: 题型:
【题目】将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )
A. y=(x+2)2﹣5 B. y=(x+2)2+5 C. y=(x﹣2)2﹣5 D. y=(x﹣2)2+5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动,有A、B两组卡片,每组各三张,A组卡片上分别写有0,1,2;B组卡片上分别写有-3,-1,1。每张卡片除正面写有不同数字外,其余均相同。甲从A组随机抽取一张记为x,乙从B组随机抽取一张记为y。
(1)若甲抽出的数字是2,乙抽出的数字是-1,它们恰好是方程ax-y=5的解,求a的值;
(2)求甲、乙随机抽取一次的数恰好是方程ax-y=3的解得概率(请用树状图或列表法求解
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:
由于a≠0,方程ax2+bx+c=0变形为:
x2+x=﹣,…第一步
x2+x+()2=﹣+()2,…第二步
(x+)2=,…第三步
x+=(b2﹣4ac>0),…第四步
x=,…第五步
嘉淇的解法从第 步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是 .
用配方法解方程:x2﹣2x﹣24=0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面直角坐标系中,⊙O1与x轴相切于点A(-2,0),与y轴交于B、C两点,O1B的延长线交x轴于点D(,0),连结AB.
(1)求证:∠ABO1=∠ABO;
(2)设E为优弧的中点,连结AC、BE交于点F,请你探求BE·BF的值.
(3)如图2,过A、B两点作⊙O2与y轴的正半轴交于点M,与BD的延长线交于点N,当⊙O2的大小变化时,给出下列两个结论.
①BM-BN的值不变;②BM+BN的值不变,其中有且只有一个结论是正确的,请你判断哪一个结论正确,证明正确的结论并求出其值.
(友情提示:如图3,如果DE∥BC,那么)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用反证法证明命题“三角形的内角中至少有一个不大于60°”时,假设正确的是
A. 假设三内角都大于60°B. 假设三内角都不大于60°
C. 假设三内角至多有一个大于60°D. 假设三内角至多有两个大于60°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com